Commutative Algebra

Due date: Monday, 19/12/2011, 10h00
Exercise 33: Let R be a noetherian integral domain, which is not a field, such that each ideal is a finite product of prime ideals. Show that R is a PID if and only if R is a $U F D$ and $\operatorname{dim}(R)=1$.

Note, a noetherian ID of dimension one where each ideal is a product of primes is called a Dedekind domain and has by Exercise 30 "unique prime factorisation" for ideals!
Exercise 34: Give an example of a ring R with two "maximal" chains of prime ideals of different length.
Exercise 35: Let K be a field and \bar{K} its algebraic closure and let $f \in K\left[x_{1}, \ldots, x_{n}\right]$.
a. Show that $\bar{K}\left[x_{1}, \ldots, x_{n}\right]$ is integral over $K\left[x_{1}, \ldots, x_{n}\right]$.
b. Show that $f \cdot \bar{K}\left[x_{1}, \ldots, x_{n}\right] \cap K\left[x_{1}, \ldots, x_{n}\right]=f \cdot K\left[x_{1}, \ldots, x_{n}\right]$.
c. Show that $\bar{K}\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle$ is integral over $K\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle$.

Hint, in part b. one may use the monomial ordering from Exercise 36 c .

Exercise 36: [Rings of Invariants]

Let G be a finite group and $R=K[\underline{x}] / I$ a finitely generated K-algebra, $G \rightarrow \operatorname{Aut}_{K-a l g}(R)$ a group homomorphism (we say that G acts on R via K-algebra automorphisms), and write $g \cdot f:=\alpha(g)(f)$ for $g \in G$ and $f \in R$. Moreover, consider $R^{G}=\{f \in R \mid g \cdot f=$ $f \forall g \in G\}$, the ring of invariants of G in R.
a. Show that R is integral over R^{G}.
b. Show that R^{G} is a finitely generated K-algebra, hence noetherian.
c. Let $\operatorname{Mon}(\underline{x})=\{0\} \cup\left\{\underline{\chi}^{\alpha} \mid \alpha \in \mathbb{N}^{n}\right\}, \operatorname{Mon}(f)=\left\{\underline{\chi}^{\alpha} \mid a_{\alpha} \neq 0\right\}$ for $0 \neq f=\sum_{\alpha} a_{\alpha} \underline{x}^{\alpha} \in K[\underline{x}]$ and $\operatorname{Mon}(0)=\{0\}$. We define a well-ordering on $\operatorname{Mon}(\underline{x})$ by $\underline{x}^{\alpha}>0$ for all α and
$\underline{x}^{\alpha}>\underline{x}^{\beta} \Longleftrightarrow \quad \operatorname{deg}\left(\underline{x}^{\alpha}\right)>\operatorname{deg}\left(\underline{x}^{\beta}\right) \quad$ or
$\left(\operatorname{deg}\left(\underline{x}^{\alpha}\right)=\operatorname{deg}\left(\underline{x}^{\beta}\right)\right.$ and $\left.\exists i: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}>\beta_{i}\right)$,
and we call $\operatorname{lm}(f)=\max (\operatorname{Mon}(f))$ the leading monomial of f.
Show, $\left(\underline{x}^{\alpha}>\underline{x}^{\beta} \Longrightarrow \underline{x}^{\alpha} \cdot \underline{x}^{\gamma}>\underline{x}^{\beta} \cdot \underline{x}^{\gamma}\right)$, and thus $\operatorname{lm}(f \cdot g)=\operatorname{lm}(f) \cdot \operatorname{lm}(g)$.
d. Consider the group homomorphism

$$
\operatorname{Sym}(n) \longrightarrow \operatorname{Aut}_{\mathrm{K}-\mathrm{alg}}\left(\mathrm{~K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]\right): \sigma \mapsto\left(\mathrm{f} \mapsto \mathrm{f}\left(\mathrm{x}_{\sigma(1)}, \ldots, \mathrm{x}_{\sigma(\mathfrak{n})}\right),\right.
$$

and the polynomial $\left(X+x_{1}\right) \cdots\left(X+x_{n}\right)=X^{n}+s_{1} X^{n-1}+\ldots+s_{n} \in K\left[x_{1}, \ldots, x_{n}\right][X]$. Show, $K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}=K\left[s_{1}, \ldots, s_{n}\right]$.

Hint, use Exercise 28 to solve part b., for part d. show first that $\underline{x}^{\alpha}=\operatorname{lm}(f)$ for $f \in K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}$ implies $\alpha_{1} \geq \ldots \geq \alpha_{n}$, and deduce that there is a $g \in K\left[s_{1}, \ldots, s_{n}\right]$ such that $\operatorname{lm}(f)=\operatorname{lm}(g)$. Use this to do induction on $\operatorname{lm}(f)$ in order to show that actually $f \in K\left[s_{1}, \ldots, s_{n}\right]$. Note that $s_{i}=\sum_{1 \leq j_{1}<\ldots<j_{i} \leq n} x_{j_{1}} \cdots x_{j_{i}}$, so what is $\operatorname{lm}\left(s_{i}\right)$?
In-Class Exercise 20: Let $R=K[x, y, z]_{\langle x, y, z\rangle}, I=\left\langle x^{2}-y^{2}, x z-y\right\rangle, J=\left\langle x^{2}-y^{2}, x z-y z\right\rangle$. Compute $\operatorname{dim}(R / I)$ and $\operatorname{dim}(R / J)$.

