Commutative Algebra

Due date: Monday, 10/11/2014, 10h00

The in-class exercises need not be handed in for marking. They should be discussed in class. No rigorous proofs are expected for these.

Exercise 4: Let R be a ring. Obviously $R \hookrightarrow R[x_1, \dots, x_n] : a \mapsto a$ is a ring homomorphism and thus makes $R[x_1, \dots, x_n]$ an R-algebra.

- a. Show that $R[x_1,\ldots,x_n]$ satisfies the following universal property: if (R',ϕ) is any R-algebra and $\alpha_1,\ldots,\alpha_n\in R'$ are given, then there is a unique R-algebra homomorphism $\alpha:R[x_1,\ldots,x_n]\to R'$ such that $\alpha(x_i)=\alpha_i$ for all $i=1,\ldots,n$.
- b. Let $I \subseteq R[x_1, \ldots, x_n]$ and $J \subseteq R[y_1, \ldots, y_m]$. Show that the following are equivalent:
 - (a) $\phi:R[x_1,\dots,x_n]/I\to R[y_1,\dots,y_m]/J$ is an R-algebra homomorphism
 - (b) There are $f_1, \ldots, f_n \in R[y_1, \ldots, y_m]$ such that $g(f_1, \ldots, f_n) \in J$ for all $g \in I$ and $\phi(\overline{g}) = \overline{g(f_1, \ldots, f_n)}$ for all $\overline{g} \in R[x_1, \ldots, x_n]/I$.
 - (c) There is an R-algebra homomorphism $\psi: R[x_1,\ldots,x_n] \to R[y_1,\ldots,y_m]$ such that $\psi(I) \subseteq J$ and $\phi(\overline{g}) = \overline{\psi(g)}$.

Note, a. means: we may uniquely define an R-algebra homomorphism on $R[x_1, \ldots, x_n]$ by just specifying the images of the x_i !

Exercise 5: Let R be a ring and $I, J_1, ..., J_n \subseteq R$. Show that:

- a. $I:(\sum_{i=1}^n J_i) = \bigcap_{i=1}^n (I:J_i)$.
- b. $\left(\bigcap_{i=1}^n J_i\right): I = \bigcap_{i=1}^n (J_i: I)$.
- c. $\sqrt{J_1 \cap \ldots \cap J_n} = \sqrt{J_1} \cap \ldots \cap \sqrt{J_n}$.
- $d. \ \sqrt{J_1+\ldots+J_n} \supseteq \sqrt{J_1}+\ldots+\sqrt{J_n}.$

Exercise 6: Let R be a ring and $f = \sum_{n=0}^{\infty} a_n x^n \in R[[x]]$ a formal power series over R. Show:

- a. f is a *unit* if and only if a_0 is a unit in R.
- b. What are the units in K[[x]] if K is a field?
- c. x is not a zero-divisor in R[[x]].
- d. If f is nilpotent, then a_n is nilpotent for all n. Is the converse true?

Hint for a., consider first the case $a_0 = 1$ and recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.

In-Class Exercise 4: Consider the ring extension

$$\iota: \mathbb{Z} \longrightarrow \mathbb{Z}_7 = \left\{ rac{z}{7^\mathfrak{n}} \; \middle| \; \mathfrak{n} \geq \mathfrak{0}, z \in \mathbb{Z}
ight\} : z \mapsto z$$

and the ideals $I=\langle 84 \rangle \lhd \mathbb{Z}$ and $J=\langle 15 \rangle \lhd \mathbb{Z}_7.$ Give generators I^e , I^{ec} , J^c , and J^{ce} .

In-Class Exercise 5: Does the following equality of ideals hold in the polynomial ring $\mathbb{C}[x,y]$:

$$\langle x^3-x^2,x^2y-x^2,xy-y,y^2-y\rangle=\langle x^2,y\rangle\cap\langle x-1,y-1\rangle.$$

In-Class Exercise 6: What are the prime ideals in $\mathbb{C}[x,y]$ containing the ideal $I=\langle x^2y-x^2\rangle.$