Fachbereich Mathematik Thomas Markwig Winter Semester 2014/15, Set 3 Cornelia Rottner

Commutative Algebra

Due date: Monday, 17/11/2014, 10h00

Exercise 8: Let R be a ring such that for every $r \in R$ there is an n = n(r) > 1 such that $r^n = r$.

- a. Show that $\operatorname{Spec}(R) = \mathfrak{m} \operatorname{Spec}(R)$.
- b. Give an example of such a ring R which is not a field.

Exercise 9: Let $R \neq 0$ be a ring. Show that Spec(R) has a minimal element with respect to inclusion, i. e. $\exists P_0 \in \text{Spec}(R) : \forall P \in \text{Spec}(R)$ with $P \subseteq P_0$ we have $P = P_0$. Hint, use Zorn's Lemma with a suitable partial ordering on the set of all prime ideals.

Exercise 10: Let R be a ring and N(R) its nil-radical. Show the following are equivalent:

- a. R/N(R) is a field.
- b. |Spec(R)| = 1.
- c. Every element of R is either a unit or nilpotent.

Give an example for such a ring which is not a field.

Exercise 11: Let M be an R-module.

- a. Prove that $\mu: M \to Hom_R(R, M)$ with $\mu(\mathfrak{m}): R \to M: r \mapsto r \cdot \mathfrak{m}$ is an isomorphism.
- b. Give an example where $M \not\cong Hom_{R}(M, R)$.

Exercise 12: Let R be an integral domain and $0 \neq I \subseteq R$. Show that I as R-module is free if and only if I is principal.

In-Class Exercise 7: Which of the following ideals I in $\mathbb{Z}[x]$ is a maximal ideal?

a.
$$I = \langle 5, 11x^3 + x - 1 \rangle$$
.

b. $I = \langle 4, x^2 + x + 1, x^2 + x - 1 \rangle$.

How many elements does the corresponding field $\mathbb{Z}[x]/I$ have?

In-Class Exercise 8: Let K be any field. Show that $x^2 - y^3 \in K[x, y]$ is irreducible.