Commutative Algebra

Due date: Monday, 15/12/2014, 10h00

Exercise 25: Let M be an R-module and $\varphi: M \to M$ an R-linear map. Show:

- a. If M is noetherian and φ is surjective, then φ is an isomorphism.
- b. If M is artinian and φ is injective, then φ is an isomorphism.

Hint, consider the kernel respectively cokernel of $\phi^{\mathfrak{n}}$ for $\mathfrak{n} \in \mathbb{N}.$

Exercise 26: Which of the following rings R_i is noetherian?

- a. $R_1 = \left\{ \frac{g}{h} \in \text{Quot}(\mathbb{C}[x]) \mid h(z) \neq 0 \text{ for } |z| = 1 \right\}.$
- b. $R_2 = \big\{ f \in \mathbb{C}\{x\} \big| \ f \ has infinite \ radius \ of \ convergence \big\}.$
- c. $R_3 = \{f \in \mathbb{C}[x] | \frac{\partial^i f}{\partial x^i}(0) = 0 \text{ for } i = 1, \dots, k\}, k \text{ fixed.}$

Exercise 27: Let $\mathbb{Q} \subseteq K$ be a field extension such that $\dim_{\mathbb{Q}}(K) < \infty$, and suppose R is a subring of K containing \mathbb{Z} such that $I \cap \mathbb{Z} \neq \{0\}$ for each ideal $0 \neq I \subseteq R$. Show that R is noetherian.

Hint, show first that $\dim_{\mathbb{Z}/p\mathbb{Z}}(R/pR) \leq \dim_{\mathbb{Q}}(K)$ for any prime number p. Then conclude that for $0 \neq m \in I \cap \mathbb{Z}$ the set R/mR (and hence I/mR) is finite by induction on the number of prime factors of $m = p_1 \cdots p_k$, p_i prime number. – Remark: using a bit field theory one can show that the assumption $I \cap \mathbb{Z} \neq \{0\}$ is always fulfilled.

Exercise 28: Let $R \subseteq R' \subseteq R''$ be rings, $R'' = R[\alpha_1, ..., \alpha_n]$ a finitely generated R-algebra and R'' finitely generated as an R'-module. Show, if R noetherian, then R' is finitely generated as an R-algebra and noetherian.

Recall, $R[\alpha_1,\ldots,\alpha_n]=\{f(\alpha_1,\ldots,\alpha_n)\mid f\in R[x_1,\ldots,x_n]\}$ is the set of all polynomial expressions in α_1,\ldots,α_n with coefficients in R. Hint, if $R''=\langle b_1,\ldots,b_m\rangle_{R'}$, then write α_i and $b_i\cdot b_j$ as linear combinations of the b_ν and consider the R-algebra generated by the coefficients.

In-Class Exercise 15: Show that $\mathbb{C}[x,y]/I$ with $I = \langle x^3 - x^2, x^2y + 2x^2, xy - y, y^2 + 2y \rangle$ is an artinian ring and decompose it as a direct sum of two local artinian rings.

In-Class Exercise 16: Is K(x) = Quot(K[x]) a noetherian $K[x]_{\langle x \rangle}$ -module?