Fachbereich Mathematik Thomas Markwig

Kommutative Algebra

Abgabe: Donnerstag, 27/10/2016, 10:00 Uhr

Die Präsenzaufgaben werden in der Übungsstunde diskutiert; es brauchen keine Lösungen für sie eingereicht zu werden.

Aufgabe 4: Ist R ein Ring, so ist $R \hookrightarrow R[x_1, \dots, x_n] : \alpha \mapsto \alpha$ offenbar ein Ringhomomorphismus und macht somit $R[x_1, \dots, x_n]$ zu einer R-Algebra.

- a. Zeige, daß $R[x_1,\ldots,x_n]$ die folgende universelle Eigenschaft erfüllt: wenn (R',ϕ) irgendeine R-Algebra ist und $\alpha_1,\ldots,\alpha_n\in R'$ gegeben sind, dann gibt es einen eindeutigen R-Algebrenhomomorphismus $\alpha:R[x_1,\ldots,x_n]\to R'$ mit $\alpha(x_i)=\alpha_i$ für alle $i=1,\ldots,n$.
- b. Sei $I \subseteq R[x_1, \ldots, x_n]$ und $J \subseteq R[y_1, \ldots, y_m]$ und sei $\varphi : R[x_1, \ldots, x_n]/I \to R[y_1, \ldots, y_m]/J$. Zeige, daß die folgenden Aussagen äquivalent sind:
 - (a) φ ist ein R-Algebrenhomomorphismus.
 - (b) Es gibt $f_1, \ldots, f_n \in R[y_1, \ldots, y_m]$, so daß $g(f_1, \ldots, f_n) \in J$ für alle $g \in I$ und $\varphi(\overline{g}) = \overline{g(f_1, \ldots, f_n)}$ für alle $\overline{g} \in R[x_1, \ldots, x_n]/I$.
 - (c) Es gibt einen R-Algebrenhomomorphismus $\psi: R[x_1,\ldots,x_n] \to R[y_1,\ldots,y_m]$, so daß $\psi(I) \subseteq J$ und $\varphi(\overline{g}) = \overline{\psi(g)}$.

Beachte, a. bedeutet, daß wir einen R-Algebrenhomomorphismus auf $R[x_1, \ldots, x_n]$ dadurch eindeutig festlegen können, daß wir die Bilder der x_i vorgeben!

Aufgabe 5: Es sei R ein Ring und $I, J_1, ..., J_n \subseteq R$. Zeige:

a.
$$I:(\sum_{i=1}^n J_i) = \bigcap_{i=1}^n (I:J_i)$$
.

b.
$$\left(\bigcap_{i=1}^n J_i\right): I = \bigcap_{i=1}^n (J_i: I)$$
.

$$c.\ \sqrt{J_1\cap\ldots\cap J_n}=\sqrt{J_1}\cap\ldots\cap\sqrt{J_n}.$$

$$d. \ \sqrt{J_1+\ldots+J_n}\supseteq \sqrt{J_1}+\ldots+\sqrt{J_n}.$$

Aufgabe 6: Es sei R ein Ring und $f = \sum_{n=0}^{\infty} \alpha_n x^n \in R[[x]]$ eine formale Potenzreihe über R. Zeige:

- a. f ist genau dann eine Einheit wenn ao eine Einheit in R ist.
- b. Was sind die Einheiten in K[[x]], wenn K ein Körper ist?
- c. x ist kein Nullteiler in R[[x]].
- d. Wenn f nilpotent ist, dann ist \mathfrak{a}_n nilpotent für alle \mathfrak{n} . Gilt die Umkehrung auch?

Hinweis zu a.: betrachte zunächst den Fall $\alpha_0=1$ und verwende die geometrische Reihe.

Präsenzaufgabe 4: Betrachte die Ringerweiterung

$$\iota: \mathbb{Z} \longrightarrow \mathbb{Z}_7 = \left\{ rac{z}{7^{\mathfrak{n}}} \;\middle|\; \mathfrak{n} \geq \mathfrak{0}, z \in \mathbb{Z}
ight\} : z \mapsto z$$

 $\text{und die Ideale } I = \langle 84 \rangle \lhd \mathbb{Z} \text{ und } J = \langle 15 \rangle \lhd \mathbb{Z}_7. \text{ Gib Erzeuger für } I^e, \ I^{ec}, \ J^c \text{ und } J^{ce}.$

Präsenzaufgabe 5: Gilt die folgende Gleichheit im Polynomring $\mathbb{C}[x,y]$:

$$\langle x^3 - x^2, x^2y - x^2, xy - y, y^2 - y \rangle = \langle x^2, y \rangle \cap \langle x - 1, y - 1 \rangle.$$

Präsenzaufgabe 6: Welche Primideale in $\mathbb{C}[x,y]$ enthalten das Ideal $I=\langle x^2y-x^2\rangle.$