Fachbereich Mathematik Thomas Markwig

Kommutative Algebra

Abgabe: Donnerstag, 17/11/2016, 10:00 Uhr

Aufgabe 17: Angenommen, (R, \mathfrak{m}) ist ein lokaler Ring und M ein R-Modul, sodass $M \oplus R^{\mathfrak{m}} \cong R^{\mathfrak{n}}$ für gewisse $\mathfrak{n} \geq \mathfrak{m}$. Zeige, dass dann $M \cong R^{\mathfrak{n}-\mathfrak{m}}$ gilt.

Aufgabe 18: Sei R' eine R-Algebra und M und N seien R-Moduln. Zeige, dass die Abbildung

$$\Phi: \left(M \otimes_R N\right) \otimes_R R' \longrightarrow \left(M \otimes_R R'\right) \otimes_{R'} \left(N \otimes_R R'\right) : m \otimes n \otimes r' \mapsto (m \otimes r') \otimes (n \otimes 1)$$

ein Isomorphismus von R'-Moduln ist.

 $\text{Man erinnere sich, dass } M \otimes_R R' \text{ mittels } r' \cdot (\mathfrak{m} \otimes s') := \mathfrak{m} \otimes (r' \cdot s') \text{ zu einem Modul "uber R" wird.}$

Aufgabe 19: Seien (R, \mathfrak{m}) ein lokaler Ring und M und N endlich erzeugte R-Moduln. Zeige, dass genau dann $M \otimes N = 0$ gilt, wenn M = 0 oder N = 0 ist.

Hinweis: Benutze Aufgabe 18 und Nakayama's Lemma.

Aufgabe 20: Sei R ein Ring und M und N seien R-Moduln. Man nehme an, dass $N = \langle n_{\lambda} | \lambda \in \Lambda \rangle$. Zeige folgende Aussagen.

- a. $M \otimes_R N = \{ \sum_{\lambda \in \Lambda} m_\lambda \otimes n_\lambda \mid m_\lambda \in M \text{ mit nur endlich vielen } m_\lambda \neq 0 \}.$
- b. Sei $x=\sum_{\lambda\in\Lambda}m_{\lambda}\otimes n_{\lambda}\in M\otimes_R N$ mit $m_{\lambda}\in M$ und nur endlich vielen $m_{\lambda}\neq 0$. Dann ist genau dann x=0, wenn es eine Indexmenge $\Theta,\ m'_{\theta}\in M$ und $\alpha_{\lambda,\theta}\in R$ mit $\theta\in\Theta$ gibt, sodass

$$m_{\lambda} = \sum_{\theta \in \Theta} \alpha_{\lambda,\theta} \cdot m_{\theta}' \quad \text{für alle} \quad \lambda \in \Lambda$$

und

$$\sum_{\lambda \in \Lambda} \alpha_{\lambda,\theta} \cdot n_{\lambda} = 0 \quad \text{ für alle } \quad \theta \in \Theta.$$

Hinweis zu b.: Betrachte zunächst den Fall, dass N frei in den $(n_{\lambda} \mid \lambda \in \Lambda)$ ist und zeige, dass dann alle m_{λ} null sind. Betrachte anschließend eine freie Darstellung $\bigoplus_{\theta \in \Theta} R \to \bigoplus_{\lambda \in \Lambda} R \to N \to 0$ von N und tensoriere diese mit M.

Präsenzaufgabe 11:

- a. Betrachte die \mathbb{Z} -Moduln $M=\mathbb{Z}/2\mathbb{Z}$ und $N=\mathbb{Z}/4\mathbb{Z}$. Wie viele Elemente besitzt $M\otimes_{\mathbb{Z}}N$? Gibt es einen vertrauten \mathbb{Z} -Modul, der isomorph zu $M\otimes_{\mathbb{Z}}N$ ist?
- b. Betrachte den \mathbb{Z} -Modul $M = \mathbb{Z}^3 \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$ und \mathbb{Q} -Vektorraum $M \otimes_{\mathbb{Z}} \mathbb{Q}$. Was ist dessen Dimension?

Präsenzaufgabe 12: Sei K ein Körper. Ist der K-Vektorraum $K[x] \otimes_K K[y]$ isomorph zu einem wohlbekannten K-Vektorraum? Kann man auf dem Tensorprodukt eine Multiplikation definieren, sodass dieses zu einer vertrauten K-Algebra wird?