Fachbereich Mathematik Thomas Markwig

Kommutative Algebra

Abgabe: Donnerstag, 22/12/2016, 10:00 Uhr

Aufgabe 33: Sei R ein noetherscher Integritätsbereich, der kein Körper ist, in dem jedes Ideal endliches Produkt von Primidealen ist. Zeige, dass R genau dann ein Hauptidealring ist, wenn R faktoriell ist und dim(R) = 1 gilt.

Bemerkung: Einen noetherschen Integritätsbereich von Dimension 1, in welchem jedes Ideal Produkt von Primidealen ist, nennt man Dedekindring. Nach Aufgabe 30 existiert in diesem "eindeutige Primfaktorzerlegung" für Ideale!

Aufgabe 34: Man gebe ein Beispiel eines Ringes R mit zwei "maximalen" Ketten von Primidealen unterschiedlicher Länge.

Aufgabe 35: Sei $f \in K[x_1, \ldots, x_n] \setminus K$ und $p \in K^n$ mit f(p) = 0, $R = K[x_1, \ldots, x_n]/\langle f \rangle$ und $\mathfrak{m} = \langle x_1 - p_1, \ldots, x_n - p_n \rangle$ ein maximales Ideal in R. Zeige, genau dann ist $R_\mathfrak{m}$ ein regulärer lokaler Ring, wenn der Gradient

$$\nabla f(p) = \left(\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p)\right) \neq (0, \dots, 0)$$

von f in p nicht der Nullvektor ist, wobei mit den partiellen Ableitungen die Formalen Ableitungen gemeint sind.

Präsenzaufgabe 20: Seien $R = K[x, y, z]_{\langle x, y, z \rangle}$, $I = \langle x^2 - y^2, xz - y \rangle$, $J = \langle x^2 - y^2, xz - yz \rangle$. Berechne $\dim(R/I)$ und $\dim(R/J)$.

Präsenzaufgabe 21: Welche der folgenden Ringerweiterungen sind ganz?

a.
$$K[x] \hookrightarrow K[x, y, z]/\langle z^2 - xy \rangle : x \mapsto \overline{x}$$
.

b.
$$K[x] \hookrightarrow K[x, y, z]/\langle z^2 - xy, y^3 - x^2 \rangle : x \mapsto \overline{x}$$
.

$$\mathbf{c.} \ \ \mathsf{K}[x] \hookrightarrow \mathsf{K}[x,y,z]/\langle z^2 - xy, x^3 - yz \rangle : x \mapsto \overline{x}.$$