Kommutative Algebra

Abgabe: Donnerstag, 02/02/2017, 10:00 Uhr

Aufgabe 46: Sei R eine endlich erzeugte nullteilerfreie K-Algebra und sei K' = Quot(R). Zeige:

- a. Sind $\beta_1, \ldots, \beta_d \in R$ algebraisch unabhängig über K und R ist algebraisch über $K[\beta_1, \ldots, \beta_d]$, so ist Quot(R) algebraisch über $K(\beta_1, \ldots, \beta_d)$.
- b. $trdeg_{K}(R) = trdeg_{K}(K')$.

Aufgabe 47: Beweise den algebraischen Hilbertschen Nullstellensatz (HNS, Theorem 7.1) mittels Noether- Normalisierung.

Aufgabe 48: Sei R ein Ring. Zeige, dass $\dim(R[x]) \ge \dim(R) + 1$.

Hinweis: Betrachte Ideale der Form $I[x] = \left\{ \sum_{i=0}^n \alpha_i x^i \mid n \geq 0, \alpha_i \in I \right\}$, wobei $I \subseteq R$. – Bachte, dass sogar Gleichheit gilt, wenn R noethersch ist. Dies ist aber wesentlich schwerer zu zeigen.

Aufgabe 49: Sei R ein Integritätsbereich. Zeige:

- a. R ist genau dann ein Bewertungsring, wenn für je zwei Ideale I, J \leq R gilt, dass I \subseteq J oder J \subseteq I.
- b. Ist R ein Bewertungsring und $P \in \text{Spec}(R)$, so sind auch R_P und R/P Bewertungsringe.

Präsenzaufgabe 27: Berechne die Dimension von $K[x, y, z]_{\langle x^2 - yz \rangle}$.