Commutative Algebra

In class exercise 1: We call an ideal I in the polynomial ring $K[\underline{x}]=K\left[x_{1}, \ldots, x_{n}\right]$ a monomial ideal if I is generated by (possibly infinitely many) monomials.
Given two monomials $\underline{\chi}^{\alpha}$ and \underline{x}^{β} we say that $\underline{\chi}^{\alpha}$ divides $\underline{\chi}^{\beta}$ if there is a monomial \underline{x}^{γ} such that $\underline{\chi}^{\alpha} \cdot \underline{x}^{\gamma}=\underline{x}^{\beta}$, i.e. $\alpha_{i} \leq \beta_{i}$ for all $i=1, \ldots, n$.
And we define the least common multiple of $\underline{\chi}^{\alpha}$ and $\underline{\chi}^{\beta}$ in the obvious way as

$$
\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\beta}\right)=x_{1}^{\max \left\{\alpha_{1}, \beta_{1}\right\}} \cdots x_{n}^{\max \left\{\alpha_{n}, \beta_{n}\right\}},
$$

i.e. it is the monomial of lowest degree which is divisible by both monomials.
a. Show that for an ideal I the following are equivalent:
(1) I is a monomial ideal.
(2) For any $f \in I$ also all monomials occuring in f belong to I.
(3) There is a generating set B of I such that for any $f \in B$ all monomials of f belong to I.
b. If $I=\left\langle\underline{\chi}^{\alpha} \mid \alpha \in \Lambda\right\rangle$ and $\underline{\chi}^{\beta} \in I$ then there is an $\alpha \in \Lambda$ such that $\underline{\chi}^{\alpha}$ divides $\underline{\chi}^{\beta}$.
c. Let $\mathrm{I}=\left\langle\underline{x}^{\alpha} \mid \alpha \in \Lambda\right\rangle$ and $\mathrm{J}=\left\langle\underline{x}^{\beta} \mid \beta \in \Lambda^{\prime}\right\rangle$ be two monomial ideals in $K[\underline{x}]$. Show that

$$
\mathrm{I} \cap \mathrm{~J}=\left\langle\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\beta}\right) \mid \alpha \in \Lambda, \beta \in \Lambda^{\prime}\right\rangle
$$

and

$$
\mathrm{I}:\left\langle\underline{x}^{\gamma}\right\rangle=\left\langle\left.\frac{\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\gamma}\right)}{\underline{\underline{x}}^{\gamma}} \right\rvert\, \alpha \in \Lambda\right\rangle .
$$

Hint for part c., show first that the two ideals are monomial ideals.
In class exercise 2: We will now introduce some basic commands for Singular. In Singular we can work with two types of rings that we have introduced so far in the lecture, polynomial rings $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, x_{n}\right]$ and power series rings $\mathrm{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The polynomial ring $\mathbb{Q}[x, y, z]$ is defined in Singular as:

$$
\text { ring } r=0,(x, y, z), d p ;
$$

Here, 0 stands for the characteristic of Q and dp says that we are working with a polynomial ring.
The power series ring $\mathbb{Z} / 5 \mathbb{Z}\left[\left[x_{1}, \ldots, x_{4}\right]\right]$ is defined in Singular as:

$$
\text { ring } r=5,(x(1 \ldots 4)), d s \text {; }
$$

Here, 5 stands for the characteristic of $\mathbb{Z} / 5 \mathbb{Z}$ and dp says that we are working with a power series ring - actually this is not quite true, but morally it is, and we need the notion of localisation to be more precise.
Once we have fixed a ring we can define polynomials and ideals and perform operations with them:

```
LIB "all.lib"; // load libraries needed e.g. for the radical
ring r=0,(x,y,z),dp;
poly f=x^3*y+5*z^2;
poly g=3x2y-xz2; // this is short hand for 3*x^2* y-x* (^^2
ideal I=f,g,x2y;
ideal J=x+y;
I*J; // the product of I and J
intersect(I,J); // intersect the two ideals
quotient(I,J); // compute the ideal quotient
radical(I); // compute the radical of I
I=std(I); // replace the generators of I by better ones
reduce(f,I); // test if f belongs to I
reduce(J,I); // test if J is contained in I
```

Consider the ideal $\mathrm{I}=\left\langle x^{2} y^{5}, x^{6}, y^{2}\right\rangle$ and $\mathrm{J}=\left\langle x^{2} y, x y^{4}\right\rangle$. Compute the following ideals with Singular:
a. $I \cap J$.
b. I J.
c. I: $\left\langle x^{3} y^{6}\right\rangle$.
d. $\sqrt{\mathrm{I}}$.
e. Test if the polynomial $x^{7}+x y^{8}$ is in I.

Verify the results without Singular.
In class exercise 3: Which of the following ideals are monomial ideals?
a. $I=\left\langle x^{2} y-y^{3}, x^{3}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$.
b. $I=\left\langle x^{4}-x^{2} y^{2}+y^{4}, 2 x^{3}-x y^{2}, 2 y^{3}-x^{2} y\right\rangle \triangleleft Q[x, y, z]$
c. $\mathrm{I}=\left\langle x^{12} y^{7}+x^{9} y+x y z^{3}+y z^{3}, x^{8}-x y z, y z^{3}, x^{8}-y z^{3}, x^{12} y^{7}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$.

