Commutative Algebra

In class exercise 1: We call an ideal I in the polynomial ring $K[\underline{x}] = K[x_1, ..., x_n]$ a *monomial ideal* if I is generated by (possibly infinitely many) monomials.

Given two monomials \underline{x}^{α} and \underline{x}^{β} we say that \underline{x}^{α} divides \underline{x}^{β} if there is a monomial \underline{x}^{γ} such that $\underline{x}^{\alpha} \cdot \underline{x}^{\gamma} = \underline{x}^{\beta}$, i.e. $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$.

And we define the *least common multiple* of \underline{x}^{α} and \underline{x}^{β} in the obvious way as

$$lem\left(\underline{x}^{\alpha},\underline{x}^{\beta}\right) = x_1^{\max\{\alpha_1,\beta_1\}} \cdots x_n^{\max\{\alpha_n,\beta_n\}},$$

i.e. it is the monomial of lowest degree which is divisible by both monomials.

- a. Show that for an ideal I the following are equivalent:
 - (1) I is a monomial ideal.
 - (2) For any $f \in I$ also all monomials occurring in f belong to I.
 - (3) There is a generating set B of I such that for any $f \in B$ all monomials of f belong to I.
- b. If $I = \langle \underline{x}^{\alpha} \mid \alpha \in \Lambda \rangle$ and $\underline{x}^{\beta} \in I$ then there is an $\alpha \in \Lambda$ such that \underline{x}^{α} divides \underline{x}^{β} .
- c. Let $I=\langle \underline{x}^{\alpha}\mid \alpha\in\Lambda\rangle$ and $J=\langle \underline{x}^{\beta}\mid \beta\in\Lambda'\rangle$ be two monomial ideals in $K[\underline{x}]$. Show that

$$I\cap J=\big\langle\operatorname{lcm}\big(\underline{x}^{\alpha},\underline{x}^{\beta}\big)\bigm|\alpha\in\Lambda,\beta\in\Lambda'\big\rangle$$

and

$$\mathrm{I}: \langle \underline{x}^{\gamma} \rangle = \left\langle \frac{\mathrm{lcm}(\underline{x}^{\alpha}, \underline{x}^{\gamma})}{\underline{x}^{\gamma}} \mid \alpha \in \Lambda \right\rangle.$$

Hint for part c., show first that the two ideals are monomial ideals.

In class exercise 2: We will now introduce some basic commands for SINGULAR. In SINGULAR we can work with two types of rings that we have introduced so far in the lecture, polynomial rings $K[x_1, ..., x_n]$ and power series rings $K[[x_1, ..., x_n]]$. The polynomial ring $\mathbb{Q}[x, y, z]$ is defined in SINGULAR as:

ring
$$r=0$$
, (x,y,z) , dp ;

Here, 0 stands for the characteristic of \mathbb{Q} and dp says that we are working with a **p**olynomial ring.

The power series ring $\mathbb{Z}/5\mathbb{Z}[[x_1,\ldots,x_4]]$ is defined in SINGULAR as:

```
ring r=5, (x(1..4)), ds;
```

Here, 5 stands for the characteristic of $\mathbb{Z}/5\mathbb{Z}$ and dp says that we are working with a power **s**eries ring — actually this is not quite true, but morally it is, and we need the notion of *localisation* to be more precise.

Once we have fixed a ring we can define polynomials and ideals and perform operations with them:

```
LIB "all.lib"; // load libraries needed e.g. for the radical
ring r=0, (x,y,z), dp;
poly f=x^3*y+5*z^2;
poly g=3x2y-xz2; // this is short hand for 3*x^2*y-x*z^2
ideal I=f,q,x2y;
ideal J=x+y;
I * J;
                  // the product of I and J
intersect(I,J);
                 // intersect the two ideals
quotient(I,J);  // compute the ideal quotient
radical(I);  // compute the radical of I
                  // replace the generators of I by better ones
I=std(I);
reduce(f, I);
                  // test if f belongs to I
                 // test if J is contained in I
reduce(J, I);
```

Consider the ideal $I = \langle x^2y^5, x^6, y^2 \rangle$ and $J = \langle x^2y, xy^4 \rangle$. Compute the following ideals with Singular:

```
a. I \cap J.
```

b. I · J.

c. I:
$$\langle x^3y^6\rangle$$
.

d. \sqrt{I} .

e. Test if the polynomial $x^7 + xy^8$ is in I.

Verify the results without SINGULAR.

In class exercise 3: Which of the following ideals are monomial ideals?

a.
$$I = \langle x^2y - y^3, x^3 \rangle \lhd \mathbb{Q}[x, y, z].$$

b. $I = \langle x^4 - x^2y^2 + y^4, 2x^3 - xy^2, 2y^3 - x^2y \rangle \lhd \mathbb{Q}[x, y, z]$

c.
$$I = \langle x^{12}y^7 + x^9y + xyz^3 + yz^3, x^8 - xyz, yz^3, x^8 - yz^3, x^{12}y^7 \rangle \triangleleft \mathbb{Q}[x, y, z].$$