Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Submit by: Monday, 25/10/21, 10 am

Exercise 1: Let $0 \neq f = \sum_{|\alpha|=0}^{m} a_{\alpha} \underline{x}^{\alpha} \in R[x_1, \dots, x_n]$ be a polynomial over the ring R. Recall:

$$\operatorname{deg}(f) := \max\{|\alpha| \mid a_{\alpha} \neq 0\}$$

is the *degree* of f, and we set $deg(0) = -\infty$. Show for $f, g \in R[x_1, ..., x_n]$:

a. $deg(f+g) \le max\{deg(f), deg(g)\},\$

b. $deg(f \cdot g) \leq deg(f) + deg(g)$,

c. $deg(f \cdot g) = deg(f) + deg(g)$, if R is an integral domain.

Note, R is an integral domain if $r\cdot r'=0$ for $r,r'\in R$ implies that r=0 or r'=0.

Exercise 2: Let K be a ring, $d \in \mathbb{N}$, and

$$\mathsf{K}[x_1,\ldots,x_n]_d = \left\{ \sum_{|\alpha|=\alpha_1+\ldots+\alpha_n=d} \mathfrak{a}_\alpha \cdot x_1^{\alpha_1} \cdots x_n^{\alpha_n} \; \Big| \; \mathfrak{a}_\alpha \in \mathsf{K} \right\}.$$

We call the elements of $K[x_1, ..., x_n]_d$ homogeneous of degree d.

- a. Show that every polynomial $0 \neq f \in K[x_1, ..., x_n]$ of degree d admits a unique decomposition $f = f_0 + ... + f_d$ with $f_i \in K[x_1, ..., x_n]_i$. We call the f_i the homogeneous summands of f.
- b. An ideal $I \trianglelefteq K[x_1, \ldots, x_n]$ is called *homogeneous*, if $f \in I$ implies that the homogeneous summands of f belong to I.

Show that I is homogeneous if and only if I is generated by homogeneous elements.

In class exercise 1: [The field $K{\{t\}}$]

a. We call $A \subset \mathbb{R}$ *suitable* if A is infinite countable, bounded from below, and has no limit point, and we then set $\mathcal{A} := \{A \subset \mathbb{R} \mid A \text{ is suitable}\}$. Show that for $A, B \in \mathcal{A}$

$$A + B := A \cup B \in \mathcal{A}$$
 and $A * B := \{a + b \mid a \in A, b \in B\} \in \mathcal{A}$.

b. Let K be any field and consider the set

 $\mathsf{K}\{\!\{t\}\!\} := \{ \mathsf{f} : \mathbb{R} \to \mathsf{K} \mid \exists \ \mathsf{A} \in \mathcal{A} \ : \ \mathsf{f}(\alpha) = \mathsf{0} \ \forall \ \alpha \not\in \mathsf{A} \}.$

We define two binary operations on $K{\{t\}}$:

$$f + g : \mathbb{R} \to K : \alpha \mapsto f(\alpha) + g(\alpha)$$

and

$$f * g : \mathbb{R} \to K : \alpha \mapsto \sum_{\gamma \in \mathbb{R}} f(\alpha - \gamma) \cdot g(\gamma),$$

note for the latter that for a fixed α only finitely many summands are non-zero! Show that $(K{\{t\}}, +, *)$ is a field.

Hint for part b., show first that $(K\{\{t\}\}, +)$ is a subgroup of $(K^{\mathbb{R}}, +)$. The hard part is to show that every non-zero element of $K\{\{t\}\}$ has an inverse. For this consider first the case that $f(\alpha) = 0$ for $\alpha < 0$ and f(0) = 1, and use the geometric series.

Remark 1

Let $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ be a sequence of real numbers. We define

 $\alpha_n \nearrow \infty :\iff (\alpha_n)_{n \in \mathbb{N}}$ is strictly monotonously increasing and unbounded,

and we set $\mathbb{A} := \{(\alpha_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \alpha_n \nearrow \infty\}$. Obviously,

$$\Phi: \mathbb{A} \longrightarrow \mathcal{A}: (\alpha_n)_{n \in \mathbb{N}} \mapsto \{\alpha_n \mid n \in \mathbb{N}\}$$

is bijective.

For $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{A}$ and $(\mathfrak{a}_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ we define

$$\sum_{n=0}^{\infty} a_n \cdot t^{\alpha_n} : \mathbb{R} \longrightarrow K : \alpha \mapsto \left\{ \begin{array}{ll} a_n, & \text{if } \alpha = \alpha_n, \\ 0, & \text{else.} \end{array} \right.$$

That is, we use the "series" in order to store the values of a funciton in such a way, that the value at α_n is just the coefficient at t^{α_n} . Thus

$$\begin{split} \mathsf{K}\{\!\{t\}\!\} =& \left\{ f: \mathbb{R} \to \mathsf{K} \mid \exists \alpha_n \nearrow \infty : f(\alpha) = 0 \; \forall \; \alpha \notin \{\alpha_n \mid n \in \mathbb{N}\} \right\} \\ =& \left\{ \sum_{n=0}^{\infty} a_n \cdot t^{\alpha_n} \mid \alpha_n \nearrow \infty, a_n \in \mathsf{K} \right\}. \end{split}$$

Given $f = \sum_{n=0}^{\infty} a_n \cdot t^{\alpha_n}$, $g = \sum_{n=0}^{\infty} b_n \cdot t^{\beta_n} \in K\{\{t\}\}$.

a. f = g if and only if $a_n = b_m$ whenever $\alpha_n = \beta_m$ and if $a_i = b_j = 0$ if there is no matching.

b.
$$f * g = \sum_{n=0}^{\infty} \left(\sum_{\alpha_i + \beta_j = \gamma_n} a_i \cdot b_j \right) \cdot t^{\gamma_n}$$
, where $(\gamma_n)_{n \in \mathbb{N}} = \Phi^{-1} \left(\Phi((\alpha_n)_{n \in \mathbb{N}}) * \Phi((\beta_n)_{n \in \mathbb{N}}) \right)$.

c.
$$f + g = \sum_{n=0}^{\infty} (f(\gamma_n) + g(\gamma_n)) \cdot t^{\gamma_n}$$
, where $(\gamma_n)_{n \in \mathbb{N}} = \Phi^{-1} (\Phi((\alpha_n)_{n \in \mathbb{N}}) + \Phi((\beta_n)_{n \in \mathbb{N}}))$.

d. If $\alpha_0 = 0$ and $a_0 = 1$, then $f^{-1} = \sum_{n=0}^{\infty} \left(-\sum_{k=1}^{\infty} a_k \cdot t^{\alpha_k} \right)^n$.