Commutative Algebra

Submit by: Monday, 25/10/21, 10 am
Exercise 1: Let $0 \neq f=\sum_{|\alpha|=0}^{m} a_{\alpha} \underline{x}^{\alpha} \in R\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial over the ring R. Recall:

$$
\operatorname{deg}(f):=\max \left\{|\alpha| \mid a_{\alpha} \neq 0\right\}
$$

is the degree of f, and we set $\operatorname{deg}(0)=-\infty$. Show for $f, g \in R\left[x_{1}, \ldots, x_{n}\right]$:
a. $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$,
b. $\operatorname{deg}(f \cdot g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)$,
c. $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$, if R is an integral domain.

Note, R is an integral domain if $r \cdot r^{\prime}=0$ for $r, r^{\prime} \in R$ implies that $r=0$ or $r^{\prime}=0$.
Exercise 2: Let K be a ring, $d \in \mathbb{N}$, and

$$
K\left[x_{1}, \ldots, x_{n}\right]_{d}=\left\{\sum_{|\alpha|=\alpha_{1}+\ldots+\alpha_{n}=d} a_{\alpha} \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid a_{\alpha} \in K\right\} .
$$

We call the elements of $K\left[x_{1}, \ldots, x_{n}\right]_{d}$ homogeneous of degree d.
a. Show that every polynomial $0 \neq f \in K\left[x_{1}, \ldots, x_{n}\right]$ of degree d admits a unique decomposition $f=f_{0}+\ldots+f_{d}$ with $f_{i} \in K\left[x_{1}, \ldots, x_{n}\right]_{i}$. We call the f_{i} the homogeneous summands of f.
b. An ideal $\mathrm{I} \unlhd \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ is called homogeneous, if $\mathrm{f} \in \mathrm{I}$ implies that the homogeneous summands of f belong to I.

Show that I is homogeneous if and only if I is generated by homogeneous elements.

In class exercise 1: [The field $K\{\{t\}\}]$

a. We call $A \subset \mathbb{R}$ suitable if A is infinite countable, bounded from below, and has no limit point, and we then set $\mathcal{A}:=\{\mathcal{A} \subset \mathbb{R} \mid \mathrm{A}$ is suitable $\}$. Show that for $\mathrm{A}, \mathrm{B} \in \mathcal{A}$

$$
A+B:=A \cup B \in \mathcal{A} \quad \text { and } \quad A * B:=\{a+b \mid a \in A, b \in B\} \in \mathcal{A}
$$

b. Let K be any field and consider the set

$$
\mathrm{K}\{\{\mathrm{t}\}\}:=\{\mathrm{f}: \mathbb{R} \rightarrow \mathrm{K} \mid \exists \mathrm{A} \in \mathcal{A}: \mathrm{f}(\alpha)=0 \forall \alpha \notin \mathrm{~A}\} .
$$

We define two binary operations on $\mathrm{K}\{\{\mathrm{t}\}\}$:

$$
f+g: R \rightarrow K: \alpha \mapsto f(\alpha)+g(\alpha)
$$

and

$$
f * g: \mathbb{R} \rightarrow K: \alpha \mapsto \sum_{\gamma \in \mathbb{R}} f(\alpha-\gamma) \cdot g(\gamma)
$$

note for the latter that for a fixed α only finitely many summands are non-zero! Show that $(\mathrm{K}\{\{\mathrm{t}\}\},+, *)$ is a field.

Hint for part b., show first that $(\mathrm{K}\{\{\mathrm{t}\}\},+)$ is a subgroup of $\left(\mathrm{K}^{\mathbb{R}},+\right)$. The hard part is to show that every non-zero element of $\mathrm{K}\{\{\mathrm{t}\}\}$ has an inverse. For this consider first the case that $\mathrm{f}(\alpha)=0$ for $\alpha<0$ and $\mathrm{f}(0)=1$, and use the geometric series.

Remark 1

Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ be a sequence of real numbers. We define
$\alpha_{n} \nearrow \infty \quad: \Longleftrightarrow\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is strictly monotonously increasing and unbounded, and we set $\mathbb{A}:=\left\{\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \alpha_{n} \nearrow \infty\right\}$. Obviously,

$$
\Phi: \mathbb{A} \longrightarrow \mathcal{A}:\left(\alpha_{n}\right)_{n \in \mathbb{N}} \mapsto\left\{\alpha_{n} \mid n \in \mathbb{N}\right\}
$$

is bijective.
For $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{A}$ and $\left(a_{n}\right)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ we define

$$
\sum_{n=0}^{\infty} a_{n} \cdot t^{\alpha_{n}}: \mathbb{R} \longrightarrow K: \alpha \mapsto \begin{cases}a_{n}, & \text { if } \alpha=\alpha_{n} \\ 0, & \text { else }\end{cases}
$$

That is, we use the "series" in order to store the values of a funciton in such a way, that the value at α_{n} is just the coefficient at $t^{\alpha_{n}}$. Thus

$$
\begin{aligned}
K\{\{t\}\} & =\left\{f: \mathbb{R} \rightarrow K \mid \exists \alpha_{n} \nearrow \infty: f(\alpha)=0 \forall \alpha \notin\left\{\alpha_{n} \mid n \in \mathbb{N}\right\}\right\} \\
& =\left\{\sum_{n=0}^{\infty} a_{n} \cdot t^{\alpha_{n}} \mid \alpha_{n} \nearrow \infty, a_{n} \in K\right\} .
\end{aligned}
$$

Given $\mathrm{f}=\sum_{n=0}^{\infty} \mathrm{a}_{\mathrm{n}} \cdot \mathrm{t}^{\alpha_{n}}, \mathrm{~g}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{b}_{\mathrm{n}} \cdot \mathrm{t}^{\beta_{n}} \in \mathrm{~K}\{\{\mathrm{t}\}\}$.
a. $f=g$ if and only if $a_{n}=b_{m}$ whenever $\alpha_{n}=\beta_{m}$ and if $a_{i}=b_{j}=0$ if there is no matching.
b. $f * g=\sum_{n=0}^{\infty}\left(\sum_{\alpha_{i}+\beta_{j}=\gamma_{n}} a_{i} \cdot b_{j}\right) \cdot t^{\gamma_{n}}$, where $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=\Phi^{-1}\left(\Phi\left(\left(\alpha_{n}\right)_{n \in \mathbb{N}}\right) * \Phi\left(\left(\beta_{n}\right)_{n \in \mathbb{N}}\right)\right)$.
c. $f+g=\sum_{n=0}^{\infty}\left(f\left(\gamma_{n}\right)+g\left(\gamma_{n}\right)\right) \cdot t^{\gamma_{n}}$, where $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=\Phi^{-1}\left(\Phi\left(\left(\alpha_{n}\right)_{n \in \mathbb{N}}\right)+\Phi\left(\left(\beta_{n}\right)_{n \in \mathbb{N}}\right)\right)$.
d. If $\alpha_{0}=0$ and $a_{0}=1$, then $f^{-1}=\sum_{n=0}^{\infty}\left(-\sum_{k=1}^{\infty} a_{k} \cdot t^{\alpha_{k}}\right)^{n}$.

