Commutative Algebra

Submit by: Monday, 01/11/2021, 10 am
The in-class exercises need not be handed in for marking. They should be discussed in class. No rigorous proofs are expected for these.

Exercise 4: Let R be a ring. Obviously $R \hookrightarrow R\left[x_{1}, \ldots, x_{n}\right]: a \mapsto a$ is a ring homomorphism and thus makes $R\left[x_{1}, \ldots, x_{n}\right]$ an R-algebra.
a. Show that $R\left[x_{1}, \ldots, x_{n}\right]$ satisfies the following universal property: if $\left(R^{\prime}, \varphi\right)$ is any R-algebra and $a_{1}, \ldots, a_{n} \in R^{\prime}$ are given, then there is a unique R-algebra homomorphism $\alpha: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{\prime}$ such that $\alpha\left(x_{i}\right)=a_{i}$ for all $i=1, \ldots, n$.
b. Let $\mathrm{I} \unlhd \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathrm{J} \unlhd R\left[y_{1}, \ldots, y_{m}\right]$ and let $\varphi: R\left[x_{1}, \ldots, x_{n}\right] / I \rightarrow R\left[y_{1}, \ldots, y_{m}\right] / J$. Show that the following are equivalent:
(a) φ is an R-algebra homomorphism
(b) There are $f_{1}, \ldots, f_{n} \in R\left[y_{1}, \ldots, y_{m}\right]$ such that $g\left(f_{1}, \ldots, f_{n}\right) \in J$ for all $g \in I$ and $\varphi(\bar{g})=\overline{g\left(f_{1}, \ldots, f_{n}\right)}$ for all $\bar{g} \in R\left[x_{1}, \ldots, x_{n}\right] / I$.
(c) There is an R-algebra homomorphism $\psi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R\left[y_{1}, \ldots, y_{m}\right]$ such that $\psi(\mathrm{I}) \subseteq \mathrm{J}$ and $\varphi(\overline{\mathrm{g}})=\overline{\psi(\mathrm{g})}$.

Note, a. means: we may uniquely define an R-algebra homomorphism on $R\left[x_{1}, \ldots, x_{n}\right]$ by just specifying the images of the x_{i} !
Exercise 5: Let R be a ring and $I, J_{1}, \ldots, J_{n} \unlhd R$. Show that:
a. $I:\left(\sum_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n}\left(I: J_{i}\right)$.
b. $\left(\bigcap_{i=1}^{n} J_{i}\right): I=\bigcap_{i=1}^{n}\left(J_{i}: I\right)$.
c. $\sqrt{\mathrm{J}_{1} \cap \ldots \cap \mathrm{~J}_{n}}=\sqrt{\mathrm{J}_{1}} \cap \ldots \cap \sqrt{\mathrm{~J}_{n}}$.
d. $\sqrt{J_{1}+\ldots+J_{n}} \supseteq \sqrt{J_{1}}+\ldots+\sqrt{J_{n}}$.

Exercise 6: Let R be a ring and $f=\sum_{n=0}^{\infty} a_{n} x^{n} \in R[[x]]$ a formal power series over R. Show:
a. f is a unit if and only if a_{0} is a unit in R.
b. What are the units in $K[[x]]$ if K is a field?
c. x is not a zero-divisor in $R[[x]]$.
d. If f is nilpotent, then a_{n} is nilpotent for all n. Is the converse true?

Hint for a., consider first the case $a_{0}=1$ and recall that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.

In class exercise 4: Consider the ring extension

$$
\iota: \mathbb{Z} \longrightarrow \mathbb{Z}_{7}=\left\{\left.\frac{z}{7^{n}} \right\rvert\, n \geq 0, z \in \mathbb{Z}\right\}: z \mapsto z
$$

and the ideals $\mathrm{I}=\langle 84\rangle \triangleleft \mathbb{Z}$ and $\mathrm{J}=\langle 15\rangle \triangleleft \mathbb{Z}_{7}$. Give generators $\mathrm{I}^{e}, \mathrm{I}^{\text {ec }}, \mathrm{J}^{\mathrm{c}}$, and $\mathrm{J}^{\text {ce }}$.
In class exercise 5: Does the following equality of ideals hold in the polynomial ring $\mathbb{C}[x, y]$:

$$
\left\langle x^{3}-x^{2}, x^{2} y-x^{2}, x y-y, y^{2}-y\right\rangle=\left\langle x^{2}, y\right\rangle \cap\langle x-1, y-1\rangle .
$$

In class exercise 6: What are the prime ideals in $\mathbb{C}[x, y]$ containing the ideal $I=$ $\left\langle x^{2} y-x^{2}\right\rangle$.

