Commutative Algebra

Submit by: Monday, 22/11/2021, 10 am
Exercise 15: (No rigorous proof is needed.)
a. Consider the \mathbb{Z}-modules $M=\mathbb{Z} / 2 \mathbb{Z}$ and $N=\mathbb{Z} / 4 \mathbb{Z}$. How many elements does $M \otimes_{\mathbb{Z}} N$ have? Is it isomorphic to a \mathbb{Z}-module that you know?
b. Consider the \mathbb{Z}-module $M=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}$ and the \mathbb{Q}-vector space $M \otimes_{\mathbb{Z}} \mathbb{Q}$. What is its dimension?

Exercise 16: Let R be a ring, M a finitely generated R-module and $\varphi \in \operatorname{Hom}_{R}\left(M, R^{n}\right)$ surjective. Show that $\operatorname{ker}(\varphi)$ is finitely generated as an R-module.

Hint, consider the exact sequence $0 \rightarrow \operatorname{ker}(\varphi) \rightarrow M \rightarrow R^{n} \rightarrow 0$.
Exercise 17: Let R be a ring, M and N be R-modules, and suppose $N=\left\langle n_{\lambda} \mid \lambda \in \Lambda\right\rangle$. Show:
a. $M \otimes_{R} N=\left\{\sum_{\lambda \in \Lambda} m_{\lambda} \otimes n_{\lambda} \mid m_{\lambda} \in M\right.$ and only finitely many $\left.m_{\lambda} \neq 0\right\}$.
b. Let $x=\sum_{\lambda \in \Lambda} m_{\lambda} \otimes n_{\lambda} \in M \otimes_{R} N$ with $m_{\lambda} \in M$ and only finitely many $m_{\lambda} \neq 0$.

Then $x=0$ if and only if there exist $m_{\theta}^{\prime} \in M$ and $a_{\lambda, \theta} \in R, \theta \in \Theta$ some index set, such that

$$
m_{\lambda}=\sum_{\theta \in \Theta} a_{\lambda, \theta} \cdot m_{\theta}^{\prime} \quad \text { for all } \quad \lambda \in \Lambda
$$

and

$$
\sum_{\lambda \in \Lambda} a_{\lambda, \theta} \cdot n_{\lambda}=0 \quad \text { for all } \quad \theta \in \Theta .
$$

Hint, for part b. consider first the case that N is free in the $\left(n_{\lambda} \mid \lambda \in \Lambda\right)$ and show that in that case actually all m_{λ} are zero. Then consider a free presentation $\bigoplus_{\theta \in \Theta} R \rightarrow \bigoplus_{\lambda \in \Lambda} R \rightarrow N \rightarrow 0$ of N and tensorize this with M.

In class exercise 12: Let K be a field. Is the K-vector space $K[x] \otimes_{K} K[y]$ isomorphic to a K-vector space that you know very well? Can you define a multiplication on the tensor product, such that it becomes a K-algebra that you know?

In class exercise 13: Suppose that (R, \mathfrak{m}) is local ring and that $M \oplus R^{m} \cong R^{n}$ for some $n \geq m$. Show that then $M \cong R^{n-m}$.

