Commutative Algebra

Submit by: Monday, 29/11/2021, 10 am

Exercise 18:

a. Let K be a field, $R=K[x, y, z] /\langle x z, y z\rangle$ and $P=\langle x, y, z-1\rangle \unlhd R$. Show $R_{P} \cong K[z]_{\langle z-1\rangle}$.
b. Let R be a ring, $f \in R$ a non-zero-divisor. Show $R_{f} \cong R[x] /\langle f x-1\rangle$.

Exercise 19: Let R be a ring and $\mathcal{N}(\mathrm{R})$ its nilradical. Show:
a. If $S \subseteq R$ multiplicatively closed, then $\mathcal{N}\left(S^{-1} R\right)=S^{-1} \mathcal{N}(R)$.
b. A ring is called reduced if it has no nilpotent elements except 0 . Show that "being reduced" is a local property, i.e. the following are equivalent:
(1) R is reduced.
(2) R_{P} is reduced for each $P \in \operatorname{Spec}(R)$.
(3) R_{m} is reduced for each $\mathfrak{m} \triangleleft \cdot R$.

Exercise 20: Show that "being flat" is a local property, i.e. if M is an R-module, then the following are equivalent:
a. M is a flat R-module.
b. M_{P} is a flat R_{P} module for each $P \in \operatorname{Spec}(R)$.
c. $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ module for each $\mathfrak{m} \triangleleft \cdot R$.

Hint, use in class exercise 14 and note that any R_{P}-module N is also an R-module and that $N_{P}=N$.
In class exercise 14: Let R^{\prime} be an R-algebra and M and N be R-modules. Show that there is an isomorphism of R^{\prime}-modules

$$
\Phi:\left(M \otimes_{R} N\right) \otimes_{R} R^{\prime} \longrightarrow\left(M \otimes_{R} R^{\prime}\right) \otimes_{R^{\prime}}\left(N \otimes_{R} R^{\prime}\right): m \otimes n \otimes r^{\prime} \mapsto\left(m \otimes r^{\prime}\right) \otimes(n \otimes 1) .
$$

Recall that $M \otimes_{R} R^{\prime}$ is an R^{\prime}-module via $r^{\prime} \cdot\left(m \otimes s^{\prime}\right):=m \otimes\left(r^{\prime} \cdot s^{\prime}\right)$.
In class exercise 15: Let $R=K[x, y]$ and $P=K[x, y, z] /\langle x z-x, y z-y-z+1\rangle$. Is P a flat R-module?

In class exercise 16: Let $\mathfrak{m}=\langle x, y\rangle \triangleleft K[x, y]$. Localize the ring R and the module P in In-Class Exercise 13 at \mathfrak{m}. Is the resulting module $P_{\mathfrak{m}}$ a flat $R_{\mathfrak{m}}$-module?

