Commutative Algebra

Submit by: Monday, 06/12/2021, 10 am

Exercise 21: Let M be an R-module and $\varphi: M \to M$ an R-linear map. Show:

- a. If M is noetherian and φ is surjective, then φ is an isomorphism.
- b. If M is artinian and ϕ is injective, then ϕ is an isomorphism.

Hint, consider the kernel respectively cokernel of ϕ^n for $n \in \mathbb{N}$.

Exercise 22: Which of the following rings R_i is noetherian?

- a. $R_1 = \left\{ \frac{g}{h} \in \text{Quot}(\mathbb{C}[x]) \mid h(z) \neq 0 \text{ for } |z| = 1 \right\}.$
- b. $R_2 = \{f \in \mathbb{C}\{x\} | f \text{ has infinite radius of convergence} \}.$
- c. $R_3 = \{ f \in \mathbb{C}[x] | \frac{\partial^i f}{\partial x^i}(0) = 0 \text{ for } i = 1, \dots, k \}, k \text{ fixed.}$

Exercise 23: Let $\mathbb{Q} \subseteq K$ be a field extension such that $\dim_{\mathbb{Q}}(K) < \infty$, and suppose R is a subring of K containing \mathbb{Z} such that $I \cap \mathbb{Z} \neq \{0\}$ for each ideal $0 \neq I \subseteq R$. Show that R is noetherian.

Hint, show first that $\dim_{\mathbb{Z}/p\mathbb{Z}}(R/pR) \leq \dim_{\mathbb{Q}}(K)$ for any prime number p. Then conclude that for $0 \neq \mathfrak{m} \in I \cap \mathbb{Z}$ the set $R/\mathfrak{m}R$ (and hence $I/\mathfrak{m}R$) is finite by induction on the number of prime factors of $\mathfrak{m} = p_1 \cdots p_k$, p_i prime number. – Remark: using a bit field theory one can show that the assumption $I \cap \mathbb{Z} \neq \{0\}$ is always fulfilled.

In class exercise 17: Show that $\mathbb{C}[x,y]/I$ with $I = \langle x^3 - x^2, x^2y + 2x^2, xy - y, y^2 + 2y \rangle$ is an artinian ring and decompose it as a direct sum of two local artinian rings.

In class exercise 18: Is K(x) = Quot(K[x]) a noetherian $K[x]_{\langle x \rangle}$ -module?