Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Submit by: Monday, 13/12/2021, 10 am

Exercise 24: Let $R \subseteq R' \subseteq R''$ be rings, $R'' = R[a_1, ..., a_n]$ a finitely generated R-algebra and R'' finitely generated as an R'-module. Show, if R noetherian, then R' is finitely generated as an R-algebra and noetherian.

Recall, $R[a_1, \ldots, a_n] = \{f(a_1, \ldots, a_n) \mid f \in R[x_1, \ldots, x_n]\}$ is the set of all polynomial expressions in a_1, \ldots, a_n with coefficients in R. Hint, if $R'' = \langle b_1, \ldots, b_m \rangle_{R'}$, then write a_i and $b_i \cdot b_j$ as linear combinations of the b_v and consider the R-algebra generated by the coefficients.

Exercise 25:

- a. Let $\phi : R \to R'$ be a ring homomorphism and $Q \triangleleft R'$ a P-primary ideal. Show that $Q^c = \phi^{-1}(Q)$ is $P^c = \phi^{-1}(P)$ -primary.
- b. Let R be a ring, $P \in \text{Spec}(R)$, and $n \ge 1$. Show that the symbolic power $P^{(n)} := \{a \in R \mid \exists s \in R \setminus P : s \cdot a \in P^n\}$ is a P-primary ideal.

Note, if $\iota: \mathbb{R} \to \mathbb{R}_{\mathbb{P}} : \mathfrak{a} \mapsto \frac{\mathfrak{a}}{\mathfrak{1}}$, then $\mathbb{P}^{(\mathfrak{n})} = ((\mathbb{P}^{\mathfrak{n}})^{e})^{c} = \iota^{-1}(\langle \mathbb{P}^{\mathfrak{n}} \rangle_{\mathbb{R}_{\mathbb{P}}}).$

Exercise 26: Find a minimal primary decomposition of $I = \langle 6 \rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$.

Hint, consider the ideals $P = \langle 2, 1 + \sqrt{-5} \rangle$, $Q = \langle 3, 1 + \sqrt{-5} \rangle$, and $Q' = \langle 3, 1 - \sqrt{-5} \rangle$. You may use Proposition 5.4.

Exercise 27: Let R = K[x, y, z] for some field K. Calculate a primary decomposition of $J = \langle xz - y^2, y - x^2 \rangle$.

Hint, consider $\varphi : R \to K[x]$ with $x \mapsto x, y \mapsto x^2, z \mapsto x^3$, $P = \ker(\varphi)$, and $Q = \langle x, y \rangle$. Show that $\ker(\varphi) = \langle y - x^2, z - x^3 \rangle$ using division with remainder.

In class exercise 19: Find the primary decomposition of $\langle x^3y^2 - xy^4 \rangle$ in K[x,y].

In class exercise 20: Find the primary decomposition of $\langle x^2 - x, xy - x \rangle$ in K[x, y].

In class exercise 21: Find the primary decomposition of the ideal $\langle x^3 - x^2 - x + 1, x^2y - x^2 - 2xy + 2x + y - 1, xy + y, y^2 - y \rangle$ in K[x, y] and in $K[x, y]_{x+1}$.