Commutative Algebra

Submit by: Monday, 13/12/2021, 10 am
Exercise 24: Let $R \subseteq R^{\prime} \subseteq R^{\prime \prime}$ be rings, $R^{\prime \prime}=R\left[a_{1}, \ldots, a_{n}\right]$ a finitely generated $R-$ algebra and $R^{\prime \prime}$ finitely generated as an R^{\prime}-module. Show, if R noetherian, then R^{\prime} is finitely generated as an R -algebra and noetherian.

Recall, $R\left[a_{1}, \ldots, a_{n}\right]=\left\{f\left(a_{1}, \ldots, a_{n}\right) \mid f \in R\left[x_{1}, \ldots, x_{n}\right]\right\}$ is the set of all polynomial expressions in a_{1}, \ldots, a_{n} with coefficients in R. Hint, if $R^{\prime \prime}=\left\langle b_{1}, \ldots, b_{m}\right\rangle_{R^{\prime}}$, then write a_{i} and $b_{i} \cdot b_{j}$ as linear combinations of the b_{v} and consider the R-algebra generated by the coefficients.

Exercise 25:

a. Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism and $Q \triangleleft R^{\prime}$ a P-primary ideal. Show that $Q^{c}=\varphi^{-1}(Q)$ is $P^{c}=\varphi^{-1}(P)$-primary.
b. Let R be a ring, $P \in \operatorname{Spec}(R)$, and $n \geq 1$. Show that the symbolic power $P^{(n)}:=$ $\left\{a \in R \mid \exists s \in R \backslash P: s \cdot a \in P^{n}\right\}$ is a P-primary ideal.

Note, if $\imath: R \rightarrow R_{P}: a \mapsto \frac{a}{T}$, then $P^{(n)}=\left(\left(P^{n}\right)^{e}\right)^{c}=r^{-1}\left(\left\langle P^{n}\right\rangle_{R_{P}}\right)$.
Exercise 26: Find a minimal primary decomposition of $I=\langle 6\rangle \triangleleft \mathbb{Z}[\sqrt{-5}]$.
Hint, consider the ideals $P=\langle 2,1+\sqrt{-5}\rangle, Q=\langle 3,1+\sqrt{-5}\rangle$, and $Q^{\prime}=\langle 3,1-\sqrt{-5}\rangle$. You may use Proposition 5.4.

Exercise 27: Let $R=K[x, y, z]$ for some field K. Calculate a primary decomposition of $J=\left\langle x z-y^{2}, y-x^{2}\right\rangle$.

Hint, consider $\varphi: R \rightarrow K[x]$ with $x \mapsto x, y \mapsto x^{2}, z \mapsto x^{3}, P=\operatorname{ker}(\varphi)$, and $Q=\langle x, y\rangle$. Show that $\operatorname{ker}(\varphi)=\left\langle y-x^{2}, z-x^{3}\right\rangle$ using division with remainder.

In class exercise 19: Find the primary decomposition of $\left\langle x^{3} y^{2}-x y^{4}\right\rangle$ in $K[x, y]$.

In class exercise 20: Find the primary decomposition of $\left\langle x^{2}-x, x y-x\right\rangle$ in $K[x, y]$.
In class exercise 21: Find the primary decomposition of the ideal $\left\langle x^{3}-x^{2}-x+\right.$ $\left.1, x^{2} y-x^{2}-2 x y+2 x+y-1, x y+y, y^{2}-y\right\rangle$ in $K[x, y]$ and in $K[x, y]_{x+1}$.

