Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Submit by: Monday, 20/12/2021, 10 am

Exercise 28: Let R be a integral domain of dimension dim(R) = 1, and let $0 \neq I \leq R$.

- a. Show if $I = Q_1 \cap \ldots \cap Q_n$ is a minimal primary decomposition, then $I = Q_1 \cdots Q_n$.
- b. If R is noetherian, then every non-zero ideal I is a finite product of primary ideals Q_i with $\sqrt{Q_i} \neq \sqrt{Q_j}$ for $i \neq j$, and the factors are unique up to ordering.

Hint, Chinese Remainder Theorem.

Exercise 29: Let R be a noetherian ring, $P \in \text{Spec}(R)$, $I \triangleleft R$ be an ideal with minimal primary decomposition $I = Q_1 \cap \ldots \cap Q_r$ and set $I_i = \bigcap_{j \neq i} Q_j$. Show the following:

a. There exists an $m \ge 1$ such that

$$I_{\mathfrak{i}}\cdot\sqrt{Q_{\mathfrak{i}}}^{\mathfrak{m}}\subseteq I \supseteq I_{\mathfrak{i}}\cdot\sqrt{Q_{\mathfrak{i}}}^{\mathfrak{m}-1}.$$

b. For $a \in I_i \cdot \sqrt{Q_i}^{m-1} \setminus I$ we have

$$\sqrt{Q_i} = I : \mathfrak{a}.$$

c. $P \in Ass(I)$ if and only if there exists an $a \in R$ such that P = I : a.

Exercise 30: Let R = K[x, y, z] for some field K. Let $P = \langle x, y \rangle$ and $Q = \langle y, z \rangle$. Calculate a minimal primary decomposition of $I = P \cdot Q$. Which of the components are isolated, which are embedded?

In class exercise 22: Let $R = K[x, y, z]_{\langle x, y, z \rangle}$, $I = \langle x^2 - y^2, xz - y \rangle$, $J = \langle x^2 - y^2, xz - yz \rangle$. Compute dim(R/I) and dim(R/J).