Commutative Algebra

Submit by: Monday, 17/01/2022, 10 am
Exercise 34: Which of the following ring extensions is integral?
a. $K[x] \hookrightarrow K[x, y, z] /\left\langle z^{2}-x y, y^{3}-x^{2}\right\rangle: x \mapsto \bar{x}$.
b. $K[x] \hookrightarrow K[x, y, z] /\left\langle z^{2}-x y, x^{3}-y z\right\rangle: x \mapsto \bar{x}$.

Exercise 35: Let K be a field and \bar{K} its algebraic closure and let $f \in K\left[x_{1}, \ldots, x_{n}\right]$.
a. Show that $\bar{K}\left[x_{1}, \ldots, x_{n}\right]$ is integral over $K\left[x_{1}, \ldots, x_{n}\right]$.
b. Show that $\bar{K}\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle$ is integral over $K\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle$.

Exercise 36: [Rings of Invariants]

Let G be a finite group, $R=K[\underline{x}] / I$ a finitely generated K-algebra, $G \rightarrow \operatorname{Aut}_{k-a l g}(R) a$ group homomorphism (we say that G acts on R via K-algebra automorphisms), and write $g \cdot f:=\alpha(g)(f)$ for $g \in G$ and $f \in R$. Moreover, let $R^{G}=\{f \in R \mid g \cdot f=f \forall g \in G\}$, the ring of invariants of G in R .
a. Show that R is integral over R^{G}.
b. Show that R^{G} is a finitely generated K-algebra, hence noetherian.

Hint, use Exercise 24 to solve part b.
In class exercise 24: [Remark: the results are needed for Exercise 34 and In Class Exercie 25.]
a. Let $\operatorname{Mon}(\underline{x})=\left\{\underline{\chi}^{\alpha} \mid \alpha \in \mathbb{N}^{n}\right\}$ and $\operatorname{Mon}(f)=\left\{\underline{\chi}^{\alpha} \mid a_{\alpha} \neq 0\right\}$ for $0 \neq f=\sum_{\alpha} a_{\alpha} \underline{\chi}^{\alpha} \in K[\underline{\chi}]$. We define a well-ordering on $\operatorname{Mon}(\underline{x})$ by

$$
\begin{aligned}
& \underline{x}^{\alpha}>\underline{x}^{\beta} \Longleftrightarrow \quad \operatorname{deg}\left(\underline{x}^{\alpha}\right)>\operatorname{deg}\left(\underline{x}^{\beta}\right) \quad \text { or } \\
&\left(\operatorname{deg}\left(\underline{x}^{\alpha}\right)=\operatorname{deg}\left(\underline{x}^{\beta}\right) \quad \text { and } \quad \exists i: \alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}>\beta_{i}\right)
\end{aligned}
$$

and we call $\operatorname{lm}(f)=\max (\operatorname{Mon}(f))$ the leading monomial of f.
Show, $\left(\underline{x}^{\alpha}>\underline{x}^{\beta} \Longrightarrow \underline{x}^{\alpha} \cdot \underline{x}^{\gamma}>\underline{x}^{\beta} \cdot \underline{x}^{\gamma}\right)$, and thus $\operatorname{lm}(f \cdot g)=\operatorname{lm}(f) \cdot \operatorname{lm}(g)$.
b. Let $K \subseteq L$ be a field extension and let $f \in K\left[x_{1}, \ldots, x_{n}\right]$. Show that

$$
f \cdot L\left[x_{1}, \ldots, x_{n}\right] \cap K\left[x_{1}, \ldots, x_{n}\right]=f \cdot K\left[x_{1}, \ldots, x_{n}\right] .
$$

In class exercise 25: Consider the group homomorphism

$$
\operatorname{Sym}(n) \longrightarrow \operatorname{Aut}_{K-a l g}\left(K\left[x_{1}, \ldots, x_{n}\right]\right): \sigma \mapsto\left(f \mapsto f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)\right.
$$

and the polynomial $\left(X+x_{1}\right) \cdots\left(X+x_{n}\right)=X^{n}+s_{1} X^{n-1}+\ldots+s_{n} \in K\left[x_{1}, \ldots, x_{n}\right][X]$.
a. Show, that $\underline{\chi}^{\alpha}=\operatorname{lm}(f)$ for $f \in K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}$ implies $\alpha_{1} \geq \ldots \geq \alpha_{n}$
b. Show, that for $f \in K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}$ there is a $g \in K\left[s_{1}, \ldots, s_{n}\right]$ such that $\operatorname{lm}(f)=$ $\operatorname{lm}(\mathrm{g})$.
c. Show, $K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}=K\left[s_{1}, \ldots, s_{n}\right]$.

Hint, for part c. do induction on $\operatorname{lm}(f)$ for $f \in K\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{Sym}(n)}$ in order to show that actually $f \in K\left[s_{1}, \ldots, s_{n}\right]$. Note that $s_{i}=\sum_{1 \leq j_{1}<\ldots<j_{i} \leq n} x_{j_{1}} \cdots x_{j_{i}}$, so what is $\operatorname{lm}\left(s_{i}\right) ?$

