Commutative Algebra

Submit by: Monday, 31/01/2022, 10 am
Exercise 40: Let R be a ring, $Q, Q^{\prime} \in \operatorname{Spec}(R)$ such that $\operatorname{dim}\left(R_{Q^{\prime}} / Q_{Q^{\prime}}\right)=1$ and suppose that R is integral over $K\left[y_{1}, \ldots, y_{n}\right]$ and $K\left[y_{1}, \ldots, y_{n}\right] / Q^{c}$ is integral over $K\left[z_{1}, \ldots, z_{m}\right]$. Show, there exists no prime ideal $P \in \operatorname{Spec}\left(K\left[y_{1}, \ldots, y_{n}\right]\right)$ such that $\mathrm{Q}^{\mathrm{c}} \nRightarrow \mathrm{P} \varsubsetneqq\left(\mathrm{Q}^{\prime}\right)^{\mathrm{c}}$.

Exercise 41: Find all maximal ideals in $\mathbb{C}[x, y] /\left\langle x^{3}-x^{2}, x^{2} y-2 x^{2}\right\rangle$.

Exercise 42:

a. Show that every maximal ideal in $\mathbb{Z}[x]$ can be generated by a prime number $p \in$ \mathbb{Z} and a polynomial $f \in \mathbb{Z}[x]$ such that its residue class in $\mathbb{Z}_{p}[x]$ is irreducible.
b. Show that $\operatorname{dim}(\mathbb{Z}[x])=2$.

Hint, show in a. first that a maximal ideal cannot be principal, then that it contains a prime number and finally that modulo that prime number it will be generated by a single polynomial. Recall that $\mathbb{Z}[x] /\langle p\rangle \cong \mathbb{Z}_{p}[x]$ is a PID and that in $\mathbb{Q}[x]$ the Bézout identity holds.

In class exercise 28: Find a Noether normalisation of $R=K[x, y] /\left\langle x^{3}-y^{2}\right\rangle$ and compute the normalisation of R.

