Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Submit by: Monday, 31/01/2022, 10 am

Exercise 40: Let R be a ring, $Q, Q' \in \text{Spec}(R)$ such that $\dim(R_{Q'}/Q_{Q'}) = 1$ and suppose that R is integral over $K[y_1, \ldots, y_n]$ and $K[y_1, \ldots, y_n]/Q^c$ is integral over $K[z_1, \ldots, z_m]$. Show, there exists no prime ideal $P \in \text{Spec}(K[y_1, \ldots, y_n])$ such that $Q^c \subsetneq P \subsetneqq (Q')^c$.

Exercise 41: Find all maximal ideals in $\mathbb{C}[x, y]/\langle x^3 - x^2, x^2y - 2x^2 \rangle$.

Exercise 42:

- a. Show that every maximal ideal in $\mathbb{Z}[x]$ can be generated by a prime number $p \in \mathbb{Z}$ and a polynomial $f \in \mathbb{Z}[x]$ such that its residue class in $\mathbb{Z}_p[x]$ is irreducible.
- b. Show that $\dim(\mathbb{Z}[x]) = 2$.

Hint, show in a. first that a maximal ideal cannot be principal, then that it contains a prime number and finally that modulo that prime number it will be generated by a single polynomial. Recall that $\mathbb{Z}[x]/\langle p \rangle \cong \mathbb{Z}_p[x]$ is a PID and that in $\mathbb{Q}[x]$ the Bézout identity holds.

In class exercise 28: Find a Noether normalisation of $R = K[x, y]/\langle x^3 - y^2 \rangle$ and compute the normalisation of R.