Fachbereich Mathematik Thomas Markwig

Commutative Algebra

Submit by: Monday, 07/02/2022, 10 am

Exercise 43: Compute the dimension of $K[x, y, z]_{(x^2-yz)}$.

Exercise 44: Prove the Algebraic HNS (Theorem 7.1) using Noether-Normalisation.

Exercise 45: Let R be a ring. Show that $dim(R[x]) \ge dim(R) + 1$.

Hint, consider ideals of the form $I[x] = \left\{ \sum_{i=0}^{n} \alpha_i x^i \mid n \ge 0, \alpha_i \in I \right\}$ for some ideal $I \le R$. – Note, if R is noetherian one can actually show equality, but that is much harder.

Exercise 46: Compute Quot(R) and dim(Quot(R)) for $R = K[x, y]/\langle x^2, xy \rangle$.

In class exercise 29: Let R be a finitely generated K-algebra which is an integral domain and let K' = Quot(R). Show that:

- a. If $\beta_1, \ldots, \beta_d \in R$ are algebraically independent over K and R is algebraic over $K[\beta_1, \ldots, \beta_d]$, then Quot(R) is algebraic over $K(\beta_1, \ldots, \beta_d)$.
- b. $trdeg_{\kappa}(R) = trdeg_{\kappa}(K')$.