Fachbereich Mathematik

Computer Algebra

Due date: Tuesday, 06/11/2007, 10h00
Exercise 1: Let $I=\left\langle\underline{x}^{\alpha} \cdot e_{i} \mid(\alpha, i) \in \Lambda\right\rangle$ and $J=\left\langle\underline{x}^{\beta} \cdot e_{j} \mid(\beta, \mathfrak{j}) \in \Lambda^{\prime}\right\rangle$ be two monomial submodules of $R[\underline{x}]^{m}$ and let $\underline{x}^{\gamma} \cdot e_{k} \in R[\underline{x}]^{m}$ be a monomial. Show that
a. $I \cap J=\left\langle\operatorname{lcm}\left(\underline{x}^{\alpha} \cdot e_{i}, \underline{x}^{\beta} \cdot e_{j}\right) \mid(\alpha, i) \in \Lambda,(\beta, j) \in \Lambda^{\prime}\right\rangle$, and
b. I : $\left\langle\underline{x}^{\gamma} \cdot e_{k}\right\rangle=\left\langle\left.\frac{\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\gamma}\right)}{\underline{x}^{\gamma}} \right\rvert\,(\alpha, k) \in \Lambda\right\rangle$.

Exercise 2: Consider the polynomial ring $R=\mathbb{Q}\left[x_{i j} \mid 1 \leq i, j \leq 8\right]$, where the variable $x_{i j}$ represents the square with coordinates (i, j) on a chess board. As in the introduction of the lecture we set

$$
M=\left\{x_{i j} \cdot x_{k l} \mid \text { queen on }(i, j) \text { can move to }(k, l) \text { in } \leq 1 \text { moves }\right\}
$$

and $I=\langle M\rangle$. We interprete a product $m_{1} \cdots m_{8}$ with $m_{i} \in\left\{x_{i j} \mid 1 \leq i, j \leq 8\right\}$ as the positioning of 8 queens on a chess board, and we then set

$$
B=\left\{m_{1} \cdots m_{8} \mid \text { no } 2 \text { queens attack each other }\right\}
$$

Show that B is a Q-vector space basis of $R_{8} /\left(I \cap R_{8}\right)$.
Exercise 3: Let $>$ be any monomial ordering on Mon $_{n}$.
a. Show that for a fixed $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ the following defines a monomial ordering on Mon_{n} :

$$
\underline{x}^{\alpha}>_{(w,>)} \underline{x}^{\beta}: \Longleftrightarrow\langle w, \alpha\rangle>\langle w, \beta\rangle, \text { or }\left(\langle w, \alpha\rangle=\langle w, \beta\rangle \text { and } \underline{x}^{\alpha}>\underline{x}^{\beta}\right)
$$

Under which assumptions is the above definition independent of the chosen ordering $>$?
b. Let $A \in \operatorname{Gl}_{n}(\mathbb{R})$ be an invertible $n \times n$-matrix over the rational numbers. Show that the following defines a monomial ordering on Mon $_{n}$:

$$
\underline{x}^{\alpha}>_{(A,>)} \underline{x}^{\beta}: \Longleftrightarrow \underline{x}^{A \alpha}>\underline{x}^{A \beta} .
$$

Exercise 4: Determine matrices $A \in \operatorname{Gl}_{n}(\mathbb{R})$ which define the following orderings:
a. $\left(>_{l p},>_{d s}\right)$, here $n=n_{1}+n_{2}$ with n_{1} variables for $l p$ and n_{2} for $d s$;
b. $\left(>_{\mathrm{dp}},>_{\mathrm{ls}}\right)$, here $\mathrm{n}=n_{1}+n_{2}$ with n_{1} variables for $d p$ and n_{2} for ls ;
c. $>_{w p(5,3,4)}$, here $n=3$;
d. $>_{w s(5,3,4)}$, here $n=3$.

