Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 1 Henning Meyer

Computer Algebra

Due date: Tuesday, 06/11/2007, 10h00

Exercise 1: Let $I = \langle \underline{x}^{\alpha} \cdot e_i \mid (\alpha, i) \in \Lambda \rangle$ and $J = \langle \underline{x}^{\beta} \cdot e_j \mid (\beta, j) \in \Lambda' \rangle$ be two monomial submodules of $R[\underline{x}]^m$ and let $\underline{x}^{\gamma} \cdot e_k \in R[\underline{x}]^m$ be a monomial. Show that

a.
$$I \cap J = \left\langle \operatorname{lcm}\left(\underline{x}^{\alpha} \cdot e_{i}, \underline{x}^{\beta} \cdot e_{j}\right) \mid (\alpha, i) \in \Lambda, (\beta, j) \in \Lambda' \right\rangle$$
, and
b. $I : \left\langle \underline{x}^{\gamma} \cdot e_{k} \right\rangle = \left\langle \frac{\operatorname{lcm}\left(\underline{x}^{\alpha}, \underline{x}^{\gamma}\right)}{\underline{x}^{\gamma}} \mid (\alpha, k) \in \Lambda \right\rangle$.

Exercise 2: Consider the polynomial ring $R = \mathbb{Q}[x_{ij} \mid 1 \le i, j \le 8]$, where the variable x_{ij} represents the square with coordinates (i, j) on a chess board. As in the introduction of the lecture we set

$$M = \{x_{ij} \cdot x_{kl} \mid \text{ queen on } (i, j) \text{ can move to } (k, l) \text{ in } \leq 1 \text{ moves} \}$$

and $I = \langle M \rangle$. We interprete a product $m_1 \cdots m_8$ with $m_i \in \{x_{ij} \mid 1 \le i, j \le 8\}$ as the positioning of 8 queens on a chess board, and we then set

 $B = \{m_1 \cdots m_8 \mid \text{ no 2 queens attack each other}\}.$

Show that B is a Q-vector space basis of $R_8/(I \cap R_8)$.

Exercise 3: Let > be any monomial ordering on Mon_n.

a. Show that for a fixed $w = (w_1, ..., w_n) \in \mathbb{R}^n$ the following defines a monomial ordering on Mon_n:

 $\underline{x}^{\alpha} >_{(w,>)} \underline{x}^{\beta} \iff \langle w, \alpha \rangle > \langle w, \beta \rangle, \text{ or } (\langle w, \alpha \rangle = \langle w, \beta \rangle \text{ and } \underline{x}^{\alpha} > \underline{x}^{\beta}).$

Under which assumptions is the above definition independent of the chosen ordering >?

b. Let $A \in Gl_n(\mathbb{R})$ be an invertible $n \times n$ -matrix over the rational numbers. Show that the following defines a monomial ordering on Mon_n :

$$\underline{x}^{\alpha} >_{(A,>)} \underline{x}^{\beta} \iff \underline{x}^{A\alpha} > \underline{x}^{A\beta}$$

Exercise 4: Determine matrices $A \in Gl_n(\mathbb{R})$ which define the following orderings:

- a. $(>_{lp},>_{ds})$, here $n = n_1 + n_2$ with n_1 variables for lp and n_2 for ds;
- b. $(>_{dp},>_{ls})$, here $n = n_1 + n_2$ with n_1 variables for dp and n_2 for ls;
- c. $>_{wp(5,3,4)}$, here n = 3;
- d. $>_{ws(5,3,4)}$, here n = 3.