Computer Algebra

Due date: Tuesday, 13/11/2007, 10h00

Exercise 5: We define the *degree lexicographical ordering* $>_{Dp}$ on Mon_n by

$$\underline{x}^{\alpha} >_{Dp} \underline{x}^{\beta} \iff |\alpha| > |\beta| \text{ or } (|\alpha| = |\beta| \text{ and } \exists k : \alpha_1 = \beta_1, \dots, \alpha_{k-1} = \beta_{k-1}, \alpha_k > \beta_k).$$

Show that the orderings $>_{lp}$, $>_{Dp}$ and $>_{dp}$ are described by the following characterising properties. Let > be a monomial ordering on Mon_n , then:

- a. $>=>_{lp}$ if and only if > is an elimination ordering for $\{x_1,\ldots,x_k\}$ for all $k=1,\ldots,n-1$, i. e. if $lm(f)\in R[x_{k+1},\ldots,x_n]$ implies $f\in R[x_{k+1},\ldots,x_n]$.
- b. $>=>_{Dp}$ if and only if > is a degree ordering and for any homogeneous $f \in R[\underline{x}]$ with $lm(f) \in R[x_k, \ldots, x_n]$ we have $f \in R[x_k, \ldots, x_n]$, $k = 1, \ldots, n$.
- c. $>=>_{dp}$ if and only if > is a degree ordering and for any homogeneous $f \in R[\underline{x}]$ with $lm(f) \in \langle x_k, \ldots, x_n \rangle$ we have $f \in \langle x_k, \ldots, x_n \rangle$, $k = 1, \ldots, n$.

Exercise 6:

- a. Let R be a unique factorisation domain and $S \subset R$ a multiplicatively closed subset. Show that $S^{-1}R$ is a unique factorisation domain.
- b. Let > be a local ordering on $Mon(x_1, \ldots, x_n)$. Show that

$$K(y_1, ..., y_m)[x_1, ..., x_n]_{>} = K[x_1, ..., x_n, y_1, ..., y_m]_{\langle x_1, ..., x_n \rangle}.$$

Hint, for part a. use the one-to-one correspondance of prime ideals under localisation.

Exercise 7: Give one possible realization of the following rings within Singular:

- a. $\mathbb{Q}[x,y,z]$,
- b. $\mathbb{F}_5[x,y,z]$,
- c. $\mathbb{Q}[x, y, z]/\langle x^5 + y^3 + z^2 \rangle$,
- d. $\mathbb{Q}(i)[x,y]$, where i is the imaginary unit,
- e. $\mathbb{F}_{27}[x_1,\ldots,x_{10}]_{\langle x_1,\ldots,x_{10}\rangle}$,
- f. $\mathbb{F}_{32003}[x, y, z]_{(x,y,z)}/\langle x^5 + y^3 + z^2, xy \rangle$,
- g. $\mathbb{Q}(t)[x,y,z]$,
- $h. \ \left(\mathbb{Q}[t]/\langle t^3+t^2+1\rangle\right)[x,y,z]_{\langle x,y,z\rangle},$
- i. $\mathbb{Q}[x,y,z]_{\langle x,y\rangle}$.

Exercise 8: Write a SINGULAR procedure spolynomial which takes as input two polynomials and returns their s-polynomial.