Fachbereich Mathematik
Winter Semester 2007/08, Set 4
Henning Meyer

Computer Algebra

Due date: Tuesday, 27/11/2007, 10h00

Exercise 13: Let $>=\left(c,>_{d p}\right)$ on $\operatorname{Mon}^{2}(x, y)$ and $G=\left(\left(x^{2}, x y\right)^{t},\left(x, y^{2}\right)^{t}\right)$. Compute the determinate division with remainder of $g=\left(x^{2}+y^{2}+2 x, y-1\right)^{t}$ with respect to G (without using Singular).

Exercise 14: Let $>$ be any monomial ordering on Mon_{n}, and let $f, g \in K[\underline{x}]$ with $\operatorname{gcd}(\operatorname{lm}(f), \operatorname{lm}(g))=1$.
a. Show there is a polynomial division with remainder of $\operatorname{spoly}(f, g)$ with respect to (f, g) with remainder zero.
b. Show that for each G containing f and g there is a polynomial division with remainder of $\operatorname{spoly}(f, g)$ with respect G whose remainder is zero.

Hint, show first that $\operatorname{spoly}(f, g)=a_{0} f+b_{0} g$ for $a_{0}=-\operatorname{tail}(g)$ and $b_{0}=\operatorname{tail}(f)$, and then define recursively $a_{i}=\operatorname{tail}\left(a_{i-1}\right)$ and $b_{i}=\operatorname{tail}\left(b_{i-1}\right)$. Consider the maximal value N such that $u \cdot \operatorname{spoly}(f, g)=a_{N} f+b_{N} g$ for some unit $u \in K[\underline{x}]_{>}^{*} \cap K[\underline{x}]$, and distinguish the two cases that $\operatorname{lt}\left(a_{N} f\right)+\operatorname{lt}\left(b_{N} g\right)$ vanishes respectively does not vanish.

Exercise 15: Let R be a ring, $I \unlhd R, g_{0}, \ldots, g_{l} \in R$ and $g=\sum_{i=0}^{l} g_{i} t^{i} \in R[t]$. Show that $\mathrm{I}:\left\langle\mathrm{g}_{0}, \ldots, \mathrm{~g}_{\mathrm{l}}\right\rangle=(\mathrm{I} \cdot \mathrm{R}[\mathrm{t}]:\langle\mathrm{g}\rangle) \cap \mathrm{R}$.

Exercise 16: Write a SingULAR procedure PIDMora which takes as input a list consisting of a polynomial g and a list of polynomials f_{1}, \ldots, f_{k} and returns a polynomial division with remainder of g with respect to $\left(f_{1}, \ldots, f_{k}\right)$, i. e. a list consiting of a unit u, a list of scalars $\left(q_{1}, \ldots, q_{k}\right)$, and a remainder r such that $u \cdot g=\sum_{i=1}^{k} q_{i} \cdot f_{i}+r$ is a PDwR.

