Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 4 Henning Meyer

Computer Algebra

Due date: Tuesday, 27/11/2007, 10h00

Exercise 13: Let $>= (c, >_{dp})$ on Mon²(x, y) and $G = ((x^2, xy)^t, (x, y^2)^t)$. Compute the determinate division with remainder of $g = (x^2 + y^2 + 2x, y - 1)^t$ with respect to G (without using SINGULAR).

Exercise 14: Let > be any monomial ordering on Mon_n , and let $f, g \in K[\underline{x}]$ with gcd(lm(f), lm(g)) = 1.

- a. Show there is a polynomial division with remainder of spoly(f,g) with respect to (f,g) with remainder zero.
- b. Show that for each G containing f and g there is a polynomial division with remainder of spoly(f,g) with respect G whose remainder is zero.

Hint, show first that $spoly(f,g) = a_0 f + b_0 g$ for $a_0 = -tail(g)$ and $b_0 = tail(f)$, and then define recursively $a_i = tail(a_{i-1})$ and $b_i = tail(b_{i-1})$. Consider the maximal value N such that $u \cdot spoly(f,g) = a_N f + b_N g$ for some unit $u \in K[\underline{x}]^* \cap K[\underline{x}]$, and distinguish the two cases that $lt(a_N f) + lt(b_N g)$ vanishes respectively does not vanish.

Exercise 15: Let R be a ring, $I \leq R$, $g_0, \ldots, g_l \in R$ and $g = \sum_{i=0}^{l} g_i t^i \in R[t]$. Show that $I : \langle g_0, \ldots, g_l \rangle = (I \cdot R[t] : \langle g \rangle) \cap R$.

Exercise 16: Write a SINGULAR procedure PIDMora which takes as input a list consisting of a polynomial g and a list of polynomials f_1, \ldots, f_k and returns a polynomial division with remainder of g with respect to (f_1, \ldots, f_k) , i. e. a list consisting of a unit u, a list of scalars (q_1, \ldots, q_k) , and a remainder r such that $u \cdot g = \sum_{i=1}^k q_i \cdot f_i + r$ is a PDwR.