Computer Algebra

Due date: Tuesday, 18/12/2007, 10h00

Exercise 25: Let > be a global monomial ordering on $Mon(\underline{x})$, and let $M \in Mat(n \times n, K[\underline{x}])$. By $f_1, \ldots, f_n \in K[\underline{x}]^{2n}$ we denote the rows of the matrix $(M, \mathbb{1}_n)$, and $G = (g_1, \ldots, g_k)$ shall be *the* reduced standard basis of $\langle f_1, \ldots, f_k \rangle_{K[\underline{x}]} \leq K[\underline{x}]^{2n}$ w. r. t. the ordering (c, >) with $lm(g_1) > \ldots > lm(g_k)$. Show:

- a. M is invertible if and only if k = n and $lm(g_i) = e_i$ for i = 1, ..., n.
- b. If M is invertible, then the rows of $(\mathbb{1}_n, M^{-1})$ are just g_1, \dots, g_n .

Exercise 26: Let $R = \mathbb{Q}[x,y,z]/\langle x^2+y^2+z^2\rangle$, $M = R^3/\langle (x,xy,xz)^t\rangle$ and $N = R^2/\langle (1,y)^t\rangle$. Moreover, let $\varphi: M \to N$ be given by the matrix

$$A = \left(\begin{array}{ccc} x^2 + 1 & y & z \\ yz & 1 & -y \end{array}\right).$$

- a. Compute $Ker(\varphi)$.
- b. Test if $(x^2, y^2)^t \in Im(\phi)$.
- c. Compute $\text{Im}(\phi) \cap \{f \in N \mid f \equiv (h,0) \text{mod } \langle (x,1)^t \rangle \text{ for some } h \in R\}.$
- d. Compute $ann_R(Im(\phi))$.

Note, you may use Singular for your computations!

Exercise 27: Write a SINGULAR procedure intersection which takes as input two lists consisting of polynomials f_1, \ldots, f_k respectively g_1, \ldots, g_l and returns a standard basis of the ideal $\langle f_1, \ldots, f_k \rangle \cap \langle g_1, \ldots, g_l \rangle$.

Exercise 28: Write a SINGULAR procedure ideal quotient which takes as input two lists consisting of polynomials f_1, \ldots, f_k respectively g_1, \ldots, g_l and returns a standard basis of the ideal $\langle f_1, \ldots, f_k \rangle : \langle g_1, \ldots, g_l \rangle$.