Fachbereich Mathematik
Winter Semester 2007/08, Set 9
Thomas Markwig

Computer Algebra

Due date: Tuesday, 15/01/2008, 10h00
Exercise 33: Let $I \triangleleft K[\underline{x}]$ be a zero-dimensional ideal such that $I \cap K\left[x_{n}\right]=\langle f\rangle$ for some irreducible polynomial $f \in K\left[x_{n}\right]$ with $\operatorname{deg}(f)=\operatorname{dim}_{K}(K[x] / I)$. Show that I is a maximal ideal in general position w.r.t. $>_{\text {lp }}$.

Exercise 34: Let K be a field of characteristic zero and let $\mathfrak{m} \triangleleft \cdot K[\underline{x}]$ be a maximal ideal. Show that there is an irreducible polynomial $f \in K\left[x_{n}\right]$ such that $K[x]_{\mathfrak{m}} \cong$ $K[\underline{x}]_{\left\langle x_{1}, \ldots, x_{n-1}, f\right\rangle}$.

Exercise 35: Give an example of a zero-dimensional ideal in $\mathbb{Z} / 2 \mathbb{Z}[x, y]$ which is not in general position w.r.t. the lexicographical ordering with $x>y$.

Exercise 36: Find an algorithm which checks if the ideal in $K[\underline{\chi}]$ generated by polynomials f_{1}, \ldots, f_{k} is zero-dimensional using only a single standard basis computation. Implement this algorithm as ZeroDimTest in SINGULAR.

