Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 10 Henning Meyer

Computer Algebra

Due date: Tuesday, 22/01/2008, 10h00

Exercise 37: Develop and implement in SINGULAR an algorithm MaxIndSet which computes a maximal independent set of an ideal I in a polynomial ring.

Exercise 38: Deduce from Exercise 32 an algorithm ZDRadical which computes the radical of a zero-dimensional ideal in $K[\underline{x}]$ with char(K) = 0. You may assume that we can calculate the squarefree part of a univariate polynomial (e. g. by factorizing it).

Exercise 39: Deduce from Exercise 38 an algorithm Radical for an arbitrary ideal $I \trianglelefteq K[\underline{x}]$ where char(K) = 0 via reduction to dimension zero as for the primary decomposition.

Exercise 40:

- a. Compute a minimal primary decomposition of $\langle x^2+1,y^2+1\rangle$ in $\mathbb{Q}[x,y]$ using ZDPD-Algorithm.
- b. Compute a minimal primary decomposition of $\langle xz,yz\rangle$ in $\mathbb{Q}[x,y,z]$ using the PD-Algorithm.