Fachbereich Mathematik
Winter Semester 2007/08, Set 11
Thomas Markwig
Henning Meyer

Computer Algebra

Due date: Tuesday, 29/01/2008, 10h00
Exercise 41: Let $A=\left(a_{i j}\right) \in \operatorname{Mat}(m \times n, R)$ be a matrix such that the k-th row is the k-th canonical basis vector in R^{n} and the l-th column is the l-th canonical basis vector in R^{m}. And let $A^{\prime} \in \operatorname{Mat}((m-1) \times(n-1), R)$ be the matrix A with the k-th row and the l-th column removed. Show that A^{\prime} defines a free presentation of $\operatorname{coker}(A)$.

Exercise 42: Let (R, \mathfrak{m}) be a noetherian local ring resp. graded K-algebra and let M be a (graded) finitely generated R-module which has a finite free resolution. Show that every minimal free reolution of M has finite length, and the length of each minimal free resolution of M coincides with the minimum of all lengths of free resolutions of M.

Exercise 43: Compute a minimal free presentation of the R-module

$$
M=\left\langle\binom{ x^{2}}{y},\binom{x}{y}\right\rangle_{R}
$$

where $R=K[x, y]_{\langle x, y\rangle} /\langle x y\rangle$.
Exercise 44: Use the Singular commands mres and betti to compute the Betti numbers of $\mathbb{Q}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$-module for small n. Deduce from the result a conjecture for the general case.

