Fachbereich Mathematik Thomas Markwig Winter Semester 2007/08, Set 11 Henning Meyer

Computer Algebra

Due date: Tuesday, 29/01/2008, 10h00

Exercise 41: Let $A = (a_{ij}) \in Mat(m \times n, R)$ be a matrix such that the k-th row is the k-th canonical basis vector in R^n and the l-th column is the l-th canonical basis vector in R^m . And let $A' \in Mat((m-1) \times (n-1), R)$ be the matrix A with the k-th row and the l-th column removed. Show that A' defines a free presentation of coker(A).

Exercise 42: Let (R, m) be a noetherian local ring resp. graded K-algebra and let M be a (graded) finitely generated R-module which has a finite free resolution. Show that every minimal free reolution of M has finite length, and the length of each minimal free resolution of M coincides with the minimum of all lengths of free resolutions of M.

Exercise 43: Compute a minimal free presentation of the R-module

$$\mathsf{M} = \left\langle \left(\begin{array}{c} \mathsf{x}^2 \\ \mathsf{y} \end{array} \right), \left(\begin{array}{c} \mathsf{x} \\ \mathsf{y} \end{array} \right) \right\rangle_{\mathsf{R}}$$

where $R = K[x, y]_{\langle x, y \rangle} / \langle xy \rangle$.

Exercise 44: Use the SINGULAR commands mres and betti to compute the Betti numbers of $\mathbb{Q} = \mathbb{Q}[x_1, \ldots, x_n]/\langle x_1, \ldots, x_n \rangle$ as $\mathbb{Q}[x_1, \ldots, x_n]$ -module for small n. Deduce from the result a conjecture for the general case.