Grundlagen der Mathematik 2

Abgabetermin: Donnerstag, 18/11/2010, 10:00

Aufgabe 20 ist eine Präsenzaufgabe und braucht nur von den Fernstudenten zur Korrektur eingereicht zu werden.

Aufgabe 17:

a. Bestimme die Eigenwerte und die Eigenräume der folgenden Matrix A und entscheide, ob sie diagonalisierbar bzw. trigonalisierbar ist:

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{array}\right) \in \mathbf{Mat}_4(\mathbb{Q}).$$

b. Es sei $E=(E_{11},E_{12},E_{21},E_{22})$ die kanonische Basis von $V=Mat_2(K)$ und $T=E_{11}+E_{12}+E_{22}\in Gl_2(K)$. Zeige, daß der Endomorphismus $f:V\to V:A\mapsto T\circ A\circ T^{-1}$ trigonalisierbar, aber nicht diagonalisierbar ist, und bestimme eine Basis B von V, so daß $M_B^B(f)$ eine obere Dreiecksmatrix ist.

Aufgabe 18: [Zyklische Unterräume]

Es sei $f \in End_K(V)$, $0 \neq x \in V$ und m > 0 mit $f^{m-1}(x) \neq 0$ und $f^m(x) = 0$.

- a. Zeige, $B = (f^{m-1}(x), f^{m-2}(x), \dots, f(x), x)$ ist eine Basis von U = Lin(B).
- b. Zeige, U ist f-invariant.
- c. Bestimme $M_B^B(f_U)$ und zeige $\chi_{_{f_U}}=\mu_{f_U}=t^{\mathfrak{m}}.$

Wir nennen U einen zyklischen Unterraum von V.

Aufgabe 19: Es sei $1 \le \dim_K(V) < \infty$.

- a. Sind $x_1, \ldots, x_r \in V$ Eigenvektoren von $f \in End_K(V)$ zu paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_r \in K$, dann ist die Familie (x_1, \ldots, x_r) linear unabhängig.
- b. Sind $f, g \in End_K(V)$, so gilt $\sigma(f \circ g) = \sigma(g \circ f)$.
- c. Sind $f,g\in End_K(V)$ mit $f\circ g=g\circ f$ und $\lambda\in K,$ so ist $Eig(f,\lambda)$ g-invariant.

Aufgabe 20:

- a. Zeige, ist $A \in Gl_n(K)$, so gibt es ein Polynom $\mathfrak{p} \in K[t]$ mit $A^{-1} = \mathfrak{p}(A)$.
- b. Bestimme die Jordansche Normalform und die zugehörige Transformationsmatrix für die Matrix \boldsymbol{A}

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 \\ -2 & 0 & 1 & 0 & 0 \\ 0 & -4 & 0 & 0 & -2 \end{array} \right) \in \textbf{Mat}_5(\mathbb{Q}).$$