Grundlagen der Mathematik 2

Die Aufgaben sind Präsenzaufgaben, die nur in den Übungen besprochen werden und von niemandem einzureichen sind.

Aufgabe 55:

- (a) Zeige, dass jede Hyperebene eine Nullmenge ist.
- (b) Zeige, dass jede beschränkte Teilmenge des \mathbb{R}^n , die höchstens endlich viele Häufungspunkte besitzt, eine Jordan-Nullmenge ist.
- (c) Sei $j \in \{1, ..., n\}$, $c \in \mathbb{R}$ und $M \subseteq V(x_j c) \subseteq \mathbb{R}^n$ beschränkt. Zeige, dass M eine Jordan-Nullmenge in \mathbb{R}^n ist.
- (d) Seien $a, b \in \mathbb{R}^n$ mit a < b und $f, g : [a, b] \longrightarrow \mathbb{R}$ seien fast üerall gleich, d.h. es gibt eine Nullmenge N, so dass f(x) = g(x) für alle $x \in [a, b] \setminus N$.
 - (1) Ist N kompakt und f auf [a,b] integrierbar, so ist auch g auf [a,b] integrierbar.
 - (2) Sind f und g auf [a, b] integrierbar, so gilt

$$\int_{[a,b]} f(x) \ dx = \int_{[a,b]} g(x) \ dx.$$

Aufgabe 56:

- (a) Zeige, dass die folgenden Mengen Normalbereiche bezüglich (x_1,x_2) und (x_2,x_1) sind.
 - (1) $B_1 = \{(x_1, x_2)^t \in \mathbb{R}^2 \mid 0 \le x_1 \le 1, \ 0 \le x_2 \le x_1\}.$
 - (2) $B_2 = \{(x_1, x_2)^t \in \mathbb{R}^2 \mid 0 \le x_1 \le \sin(x_2), 0 \le x_2 \le \frac{\pi}{2}\}.$
- (b) Sei B $\subseteq \mathbb{R}^2$ der Normalbereich im ersten Quadranten zwischen der Geraden $x_2 = x_1$ und der Parabel $x_2 = x_1^2$. Berechne $\int_B x_1 x_2 d(x_1, x_2)$.
- (c) Berechne das Volumen des Tetraeders, der von den drei Koordinatenachsen und der Ebene $x_3=2-2x_1-x_2$ begrenzt wird.