Grundlagen der Mathematik 2

Abgabetermin: Donnerstag, 10.12.2015, 10:00

Aufgabe 29:

a. Bestimme eine orthogonale Matrix $T \in O(3)$, die die folgende symmetrische Matrix A diagonalisiert:

$$A = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 2 & -4 \\ 2 & -4 & 2 \end{pmatrix}.$$

Ist die Matrix A positiv definit?

b. Berechne für die Matrix

eine unitäre Matrix S, so daß $S^* \circ T \circ S$ Diagonalgestalt hat.

Aufgabe 30: Es sei V ein endlich-dimensionaler unitärer Raum und $f \in End_{\mathbb{C}}(V)$ so, daß es ein $\mathfrak{m} \in \mathbb{N}$ gibt mit $f^{\mathfrak{m}} = id_{V}$. Zeige, dann sind die folgenden Aussagen äquivalent:

- a. f ist unitär.
- b. f ist normal.
- c. Für Eigenwerte $\lambda \neq \mu$ von f gilt Eig(f, λ) \perp Eig(f, μ).

Aufgabe 31: Es sei $V \neq 0$ ein endlich-dimensionaler unitärer Raum und $f \in End_{\mathbb{C}}(V)$ mit $\langle f(x), x \rangle = 0$ für alle $x \in V$. Zeige, dann ist f die Nullabbildung.

Aufgabe 32: Es sei $V \neq 0$ ein endlich-dimensionaler unitärer Raum und $f \in \operatorname{End}_{\mathbb{C}}(V)$. Zeige, die folgenden Aussagen sind gleichwertig:

- a. $f^* = -f$.
- b. Für alle $x \in V$ gilt: $\langle f(x), x \rangle \in i\mathbb{R}$.
- c. Es gibt eine Orthonormalbasis von V aus Eigenvektoren von f und der Realteil aller Eigenwerte ist Null.