Lineare Algebra 1 / Mathematik für Physiker 2

Die Übungen von Blatt 1 werden in den Übungsstunden der zweiten Vorlesungswoche als Präsenzaufgaben bearbeitet und besprochen.

Aufgabe 1:

(a) Überprüfe, ob die Menge $G=\mathbb{Q}\times\mathbb{Q}$ mit der folgenden zweistelligen Operation eine Gruppe ist:

$$G \times G \longrightarrow G : ((a,b),(a',b')) \mapsto (a,b) \cdot (a',b') := (aa',bb').$$

(b) Zeige, wenn (G,*) und (H,\circ) abelsche Gruppen sind, dann wird $G\times H$ durch folgende zweistellige Operation ebenfalls eine abelsche Gruppe:

$$(G \times H) \times (G \times H) \longrightarrow G \times H : ((a,b),(c,d)) \mapsto (a*c,b\circ d).$$

Aufgabe 2: Sei M eine Menge. Für zwei Abbildungen $f: M \to M$ und $g: M \to M$ definieren wir die *Komposition* von f und g durch

$$f \circ g : M \to M : m \mapsto f(g(m)).$$

Wir nennen eine Abbildung $f: M \to M$ bijektiv, wenn es eine Abbildung $f': M \to M$ gibt, so daß

$$f \circ f' = f' \circ f = id_M$$

wobei $id_M:M\to M:\mathfrak{m}\mapsto\mathfrak{m}$ die Identität auf M ist. Die Menge aller bijektiven Selbstabbildungen von M bezeichnen wir mit

$$Sym(M) = \{f : M \to M \mid f \text{ ist bijektiv}\}.$$

Zeige, $(Sym(M), \circ)$ ist eine Gruppe.

Aufgabe 3: Für zwei reelle Zahlen $\mathfrak{a},\mathfrak{b}\in\mathbb{R}$ definieren wir die Abbildung

$$f_{a,b}:\mathbb{R}\longrightarrow\mathbb{R}:x\mapsto a\cdot x+b.$$

Welche der folgenden Mengen sind Untergruppen von $(Sym(\mathbb{R}), \circ)$?

- (a) $U = \{f_{a,b} \mid a,b \in \mathbb{R}, a \neq 0\},\$
- (b) $V = \{f_{\alpha,1} \mid \alpha \in \mathbb{R}, \alpha \neq 0\}.$

Aufgabe 4: Beweise, dass $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ mit den Verknüpfungen

$$(\mathfrak{a},\mathfrak{b})+(\mathfrak{a}',\mathfrak{b}'):=(\mathfrak{a}+\mathfrak{a}',\mathfrak{b}+\mathfrak{b}')$$

und

$$(a,b)\cdot(a',b'):=(aa'-bb',ab'+ba')$$

für $(a,b),(a',b')\in\mathbb{R}\times\mathbb{R}$ ein Körper ist.