Lineare Algebra 1 / Mathematik für Physiker 2

Abgabetermin: Donnerstag, 28.11.2019, 10:00

Aufgabe 25:

- a. Es seien U_1,\ldots,U_k Unterräume eines K-Vektorraums V mit Basen B_1,\ldots,B_k . Zeige, genau dann ist $V=U_1\oplus\ldots\oplus U_k$ die direkte Summe der U_i , wenn $B=B_1\cup\ldots\cup B_k$ eine Basis von V ist.
- b. Zeige, für jeden Körper K sind die Mengen $U := \{(\alpha_1,..,\alpha_n)^t \in K^n \mid \alpha_1 = \cdots = \alpha_n\}$ und $U' := \{(\alpha_1,..,\alpha_n)^t \in K^n \mid \alpha_1 + \cdots + \alpha_n = 0\}$ Unterräume von K^n , und bestimme $\dim_K(U), \dim_K(U')$ und $\dim_K(U+U')$.

Aufgabe 26: Betrachte den Vektorraum $P_n := \left\{\sum_{k=0}^n \alpha_k \cdot t^k \mid \alpha_k \in K\right\}$ der Polynome vom Grad höchstens n mit Basis $B = (t^0, t^1, \dots, t^n)$ und die formale Ableitung

$$d:P_n\longrightarrow P_n:\sum_{k=0}^n\alpha_k\cdot t^k\mapsto \sum_{k=1}^nk\cdot\alpha_k\cdot t^{k-1}.$$

- a. Berechne die Matrixdarstellung $M_B^B(d)$ und den Rang von d.
- b. Zeige, dass im Fall n=3 auch $D=(t^0,t^0+t^1,t^1+t^2,t^2+t^3)$ eine Basis von P_3 ist und berechne die Basiswechsel T^D_B und T^B_D sowie die Matrixdarstellung $M^D_D(d)$.

Aufgabe 27: [Zyklische Unterräume]

Es sei $f \in End_K(V)$, $0 \neq x \in V$ und m > 0 mit $f^{m-1}(x) \neq 0$ und $f^m(x) = 0$.

- a. Zeige, $B = \left(f^{m-1}(x), f^{m-2}(x), \dots, f(x), x\right)$ ist eine Basis von U = Lin(B).
- b. Zeige, U ist f-invariant, und bestimme $M_B^B(f_U)$.

Aufgabe 28:

a. Zeige, für $0 \neq \lambda \in K$ sowie $1 \leq i, j \leq n$ mit $i \neq j$ gilt

$$Q_{i}^{j}(\lambda) = S_{j}\big(\lambda^{-1}\big) \circ Q_{i}^{j}(1) \circ S_{j}(\lambda).$$

b. Seien $A \in Mat(n \times p, K)$ und $B \in Mat(m \times n, K)$, dann gilt

$$rang(B \circ A) \le min\{rang(A), rang(B)\}.$$

c. Überführe die folgende Matrix in reduzierte Zeilen-Stufen-Form und berechne ihren Rang:

$$A = \begin{pmatrix} 0 & 0 & 2 & 6 & 4 & 0 \\ -1 & -2 & 1 & 2 & 1 & 0 \\ 2 & 4 & 0 & 2 & 2 & 1 \\ 1 & 2 & 0 & 1 & 1 & 0 \\ -2 & -4 & 2 & 4 & 2 & 0 \end{pmatrix} \in \mathbf{Mat}(5 \times 6, \mathbb{Q}).$$