Lineare Algebra 1 / Mathematik für Physiker 2

Abgabetermin: Donnerstag, 23.1.2020, 10:00

Aufgabe 49:

a. Bestimme die Jordansche Normalform und die zugehörige Transformationsmatrix für

$$A = \begin{pmatrix} 3 & 6 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 9 & 3 & 0 \\ 0 & 12 & 0 & 3 \end{pmatrix} \in \mathbf{Mat}_4(\mathbb{Q}).$$

b. Bestimme die Jordansche Normalform und die zugehörige Transformationsmatrix für

$$A = \begin{pmatrix} 1 & 1 & 0 & -1 & 0 & 1 & 0 \\ 2 & 1 & 2 & -2 & 1 & 2 & 0 \\ 0 & -1 & 1 & 1 & 0 & -1 & 0 \\ 2 & 0 & 2 & -1 & 2 & 0 & 1 \\ -2 & 0 & -2 & 0 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \in \mathbf{Mat}_7(\mathbb{Q}).$$

c. Berechne mit Hilfe der Jordanschen Normalform die Matrix A^{100} für

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \in Mat_3(\mathbb{Q}).$$

Aufgabe 50: Bestimme eine Orthonormalbasis des \mathbb{R} -Vektorraums

$$U := \{(v, w, x, y, z) \in \mathbb{R}^5 \mid v + w + x + y + z = 0\}$$

bezüglich des Standardskalarproduktes auf \mathbb{R}^5 .

Aufgabe 51: Für $V=\text{Mat}_n(\mathbb{R})$ definieren wir $\langle\cdot,\cdot\rangle\colon V\times V\to\mathbb{R}, (A,B)\mapsto \text{Spur}(A^t\circ B).$

- a. Zeige, $\langle \cdot, \cdot \rangle$ ist ein Skalarprodukt auf V.
- b. Zeige, für $U = \{A \in V | A^t = A\}$ gilt $U^{\perp} = \{A \in V | A^t = -A\}$.

Aufgabe 52: Sei V ein endlich-dimensionaler euklidischer oder unitärer Raum.

- a. Zeige die Parallelogrammgleichung $||x + y||^2 + ||x y||^2 = 2 \cdot (||x||^2 + ||y||^2)$ gilt.
- b. Zeige, ist π_U die orthogonale Projektion auf einen Unterraum U von V und ist (x_1,\ldots,x_r) eine ONB von U, dann gilt für $x\in V$

$$\pi_{U}(x) = \sum_{i=1}^{r} \langle x_i, x \rangle \cdot x_i.$$