Lineare Algebra 1 / Mathematik für Physiker 2

Abgabetermin: Donnerstag, 30.1.2020, 10:00

Aufgabe 53: Sei V ein endlich-dimensionaler euklidischer oder unitärer Raum.

Für jedes $g \in \text{Hom}_{\mathbb{K}}(V, \mathbb{K})$ gibt es genau ein $y \in V$ mit $g(x) = \langle y, x \rangle$ für alle $x \in V$.

Hinweis: überlege mit Hilfe der Parsevalschen Gleichung, wie y zu gegebenem g aussehen muß.

Aufgabe 54: Sei V ein endlich-dimensionaler euklidischer oder unitärer Raum. Ist $f \in End_{\mathbb{K}}(V)$ normal, so gelten $Ker(f) = Ker(f^*)$ und $V = Ker(f) \perp Im(f)$.

Aufgabe 55: Es sei V ein endlich-dimensionaler unitärer Raum und $f \in End_{\mathbb{C}}(V)$ so, daß es ein $\mathfrak{m} \in \mathbb{N}$ gibt mit $f^{\mathfrak{m}} = id_{V}$. Zeige, dann sind die folgenden Aussagen äquivalent:

- a. f ist unitär.
- b. f ist normal.
- c. Für Eigenwerte $\lambda \neq \mu$ von f gilt Eig(f, λ) \perp Eig(f, μ).

Aufgabe 56: Zeige, daß die folgende Matrix A normal ist und bestimme eine orthogonale Matrix $T \in O(3)$, die sie diagonalisiert:

$$A = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 2 & -4 \\ 2 & -4 & 2 \end{pmatrix}.$$