Lineare Algebra 2 - Multilineare Algebra

Abgabetermin: Donnerstag, 28.05.2020, 10:00

Aufgabe 9: Es sei V ein endlich-dimensionaler K-Vektorraum und $U_1, U_2 \subseteq V$ seien zwei Unterräume von V. Zeige:

- (a) $(U_1 + U_2)^\circ = U_1^\circ \cap U_2^\circ$.
- (b) $(U_1 \cap U_2)^\circ = U_1^\circ + U_2^\circ$.

Aufgabe 10: Zeige, daß die Familie

$$B = ((2, 2, 2, 1)^{t}, (0, 1, 0, 0)^{t}, (1, 2, 3, 0)^{t}, (1, 0, 0, 1)^{t}))$$

eine Basis des \mathbb{R}^4 ist und bestimme die duale Basis B^* als Vektoren in $Mat(1\times 4,\mathbb{R})$.

Aufgabe 11: Sei V ein K-Vektorraum und $U \subseteq V$ ein Unterraum. Wir definieren eine Abbildung

$$i: (V/U)^* \to V^*: g \mapsto (V \to K: v \mapsto g(v+U)).$$

Zeige, i ist ein Monomorphismus mit $\text{Im}(i) = U^{\circ}$.

Aufgabe 12: Es sei V ein K-Vektorraum.

(a) Zeige, ist $W\subseteq V^*$ ein Unterraum von V^* , dann ist

$$W^{\circ} = \{ x \in V \mid \langle g, x \rangle = 0 \ \forall \ g \in W \}$$

ein Unterraum von V.

(b) Zeige, ist L(V) die Menge aller Unterräume des endlich-dimensionalen Vektorraums V und $L(V^*)$ die Menge aller Unterräume von V^* , dann sind

$$\circ: \mathsf{L}(V) \longrightarrow \mathsf{L}(V^*): U \mapsto U^\circ$$

und

$$\odot: \mathsf{L}(\mathsf{V}^*) \longrightarrow \mathsf{L}(\mathsf{V}): W \mapsto W^{\odot}$$

bijektiv und zueinander invers. Zudem folgt aus $U\subseteq\widetilde{U}$ und $W\subseteq\widetilde{W}$

$$u^\circ \supset \widetilde{u}^\circ$$

und

$$W^{\circ} \supset \widetilde{W}^{\circ}$$
.