Lineare Algebra 2 - Multilineare Algebra

Abgabetermin: Donnerstag, 26.11.2020, 10:00

Aufgabe 5: Wir bezeichnen mit e_i den i-ten Einheitsvektor im K^m , i = 1, ..., m und mit f_j den j-ten Einheitsvektor im K^n , j = 1, ..., n. Ferner bezeichne $E_i^j \in Mat(m \times n, K)$ die Matrix mit einer Eins an Position (i, j) als einzigem Nicht-Null-Eintrag.

(a) Zeige, daß es genau eine bilineare Abbildung

$$b: K^m \times K^n \longrightarrow Mat(m \times n, K)$$

gibt mit

$$b(e_i, f_j) = E_i^j$$

für alle i = 1, ..., m, j = 1, ..., n.

(b) Sei W ein K-Vektorraum und sei

$$c: K^m \times K^n \longrightarrow W$$

eine bilineare Abbildung. Zeige, dann gibt es genau eine lineare Abbildung

$$f: Mat(m \times n, K) \longrightarrow W$$

so daß $f \circ b = c$ gilt.

Aufgabe 6:

(a) Bestimme für die folgende symmetrische Matrix $A \in Mat_5(\mathbb{R})$ mit Hilfe des symmetrischen Gaußalgorithmus' eine Transformationsmatrix $T \in Gl_5(\mathbb{R})$, so daß $T^t \circ A \circ T$ eine Diagonalmatrix wie im Sylvesterschen Trägheitssatz ist, und bestimme den Trägheitsindex, den Morseindex, die Signatur und den Rang:

$$A = \left(\begin{array}{ccccc} 1 & 0 & 2 & 1 & 1 \\ 0 & -1 & 0 & 0 & 1 \\ 2 & 0 & 5 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 & 0 \end{array}\right).$$

(b) Zeige, daß die folgende Familie eine Basis des \mathbb{R}^4 ist und bestimme die duale Basis B^* als Vektoren in $Mat(1 \times 4, \mathbb{R})$:

$$B = ((1,0,0,2)^{t}, (0,1,1,0)^{t}, (2,0,1,4)^{t}, (1,2,2,3)^{t}).$$

Aufgabe 7: Sei V ein n-dimensionaler K-Vektorraum und seien $g_1, \ldots, g_n \in V^*$. Zeige, genau dann ist die Familie (g_1, \ldots, g_n) linear unabhängig in V^* , wenn es keinen Vektor $0 \neq x \in V$ gibt, so das $g_i(x) = 0$ für alle $i = 1, \ldots, n$.

Aufgabe 8: Zeige, für zwei Unterräume U_1 und U_2 von V gilt $(U_1+U_2)^\circ=U_1^\circ\cap U_2^\circ.$