Lineare Algebra 2 - Algebraische Strukturen

Abgabetermin: Donnerstag, 14.01.2021, 10:00

Aufgabe 17: Es sei R ein Ring und $I_k \subseteq R$, $k \in \mathbb{N}$, seien Ideale mit der Eigenschaft

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$$

d.h. $I_k \subseteq I_{k+1}$ für alle $k \in \mathbb{N}$. Zeige, daß dann auch

$$\bigcup_{k\in {\rm I\! N}} I_k \unlhd R$$

ein Ideal in R ist.

Aufgabe 18: Es sei R ein kommutativer Ring mit Eins, der nur endlich viele Elemente enthält. Zeige, dann ist jedes Element von R entweder eine Einheit oder ein Nullteiler.

Hinweis, für $a \in R$ betrachte man die Abbildung $R \longrightarrow R : x \mapsto a \cdot x$.

Aufgabe 19: Bestimme alle Polynome f in $\mathbb{Z}_2[t]$ vom Grad 4, deren Leitkoeffizient lc(f) und deren konstanter Koeffizient f(0) beide $\overline{1}$ sind. Welche dieser Polynome sind irreduzibel? Beweise Deine Aussage.

Aufgabe 20:

(a) Zeige, daß die Menge

$$\mathbb{Z}[\mathfrak{i}] := \{ x + y \cdot \mathfrak{i} \mid x, y \in \mathbb{Z} \}$$

ein Unterring von \mathbb{C} ist.

- (b) Zeige, ist $p = x + y \cdot i \in \mathbb{Z}[i]$ so, daß $|p|^2 = x^2 + y^2$ eine Primzahl in \mathbb{Z} ist, dann ist p irreduzibel in $\mathbb{Z}[i]$.
- (c) Finde ein Beispiel für eine Zahl p wie in Teil b.