Lineare Algebra 2 - Algebraische Strukturen

Abgabetermin: Donnerstag, 13.11.2025, 10:00

Aufgabe 3:

(a) Zeige, ist $\sigma=(\alpha_1\ \alpha_2\ \dots\ \alpha_k)\in \mathbb{S}_n$ ein k-Zykel und $\pi\in \mathbb{S}_n$ eine Permutation, dann gilt

$$\pi \circ \sigma \circ \pi^{-1} = (\pi(\alpha_1) \ \pi(\alpha_2) \ \dots \ \pi(\alpha_k))$$

und ist somit insbesondere ein k-Zykel.

(b) Zeige, der Zykeltyp einer Permutation bleibt unter Konjugation erhalten, d.h. sind $\sigma, \pi \in \mathbb{S}_n$, dann haben σ und $\pi \circ \sigma \circ \pi^{-1}$ denselben Zykeltyp.

Aufgabe 4: [Diëdergruppe \mathbb{D}_8]

Wir wollen die Untergruppe

$$\mathbb{D}_8 = \langle (1\ 2\ 3\ 4), (2\ 4) \rangle$$

der symmetrischen Gruppe S₄ betrachten.

- (a) Berechne alle Elemente der \mathbb{D}_8 .
- (b) Bestimme alle Untergruppen und das Untergruppendiagramm der \mathbb{D}_8 .

Präsenzaufgabe 7: Betrachte die Permutationen

- (a) Berechne $\sigma \circ \pi$, $\pi \circ \sigma$, σ^{-1} , π^{-1} .
- (b) Bestimme für jede der Permutationen in a. die Zyklenzerlegung.
- (c) Schreibe $\sigma \circ \pi$ als ein Produkt von Transpositionen.
- (d) Schreibe σ als ein Produkt von Transpositionen aufeinander folgender Zahlen.
- (e) Berechne für jede der Permutationen in a. das Signum.

Präsenzaufgabe 8: Zeige, ist G eine Gruppe von Primzahlordnung, so ist G zyklisch, d.h. es gibt ein $g \in G$, so daß $G = \langle g \rangle$.