Prof. Dr. Gert-Martin Greuel

Dr. Thomas Keilen

Lineare Algebra II

Abgabetermin: Montag, 10/05/2004, 13:00 Uhr

Aufgabe 5: Berechne den größten gemeinsamen Teiler der Polynome $f = x^6 + 3x^5 + x^4 - 2x^3 - 3x^2 + 7x + 3 \in \mathbb{Q}[x]$ und $g = x^3 + 6x^2 + 10x + 3 \in \mathbb{Q}[x]$.

Hinweis: Verwende Polynomdivision mit Rest und den Euklidischen Algorithmus wie bei den ganzen Zahlen.

Aufgabe 6: Gib ein Beispiel für einen (notwendig nicht-nullteilerfreien) Ring R und eine Einheit $f \in R[x]^*$, die keine Einheit in R^* ist.

Aufgabe 7: Sei R ein kommutativer Ring mit Eins, A eine R-Algebra und $a \in A$. Wir nennen A *frei in* a, falls für jede R-Algebra B und jedes $b \in B$ gilt, daß es *genau einen* R-Algebrenhomomorphismus $\phi: A \to B$ gibt mit $\phi(a) = b$. Zeige:

- a. R[x] ist frei in x.
- b. Ist A frei in a, so gibt es genau einen Isomorphismus $\phi:R[x]\to A$ mit $\phi(x)=a.$

Aufgabe 8: [K[x]] ist ein Hauptidealring.]

Es sei K ein Körper und $I \subseteq K[x]$ ein Ideal. Zeige, es gibt ein $f \in K[x]$, so daß $I = \langle f \rangle$.

Hinweis: Betrachte in I Elemente ungleich Null von minimalem Grad.