Lineare Algebra II

Abgabetermin: Montag, 07/06/2004, 13:00 Uhr

Aufgabe 17: Sei V ein \mathbb{R} -Vektorraum mit Basis $E=(x_1,x_2,x_3)$ und $f\in End_{\mathbb{R}}(V)$ mit

$$f(x_1) = x_1 + 3x_2 + 6x_3,$$

$$f(x_2) = -3x_1 - 5x_2 - 6x_3,$$

$$f(x_3) = 3x_1 + 3x_2 + 4x_3.$$

Bestimme das Minimalpolynom von f, zeige, daß f diagonalisierbar ist, und bestimme eine Basis B, bezüglich derer f Diagonalgestalt hat.

Aufgabe 18: Ein Polynom $k \in K[t]$ heißt *kleinstes gemeinsames Vielfaches* von $g, h \in K[t]$ (kurz kgV(g,h)), falls k folgende Eigenschaft besitzt: $g \mid k$ und $h \mid k$, und für jedes Polynom k' mit der Eigenschaft $g \mid k'$ und $h \mid k'$ gilt $k \mid k'$.

Zeige, k ist genau dann ein kgV(g,h), wenn $kK[t] = gK[t] \cap hK[t]$ gilt.

Aufgabe 19: Es sei $V=U_1\oplus U_2$ ein endlich-dimensionaler K-Vektorraum und $f\in End_K(V)$ mit $f(U_i)\subseteq U_i$. Zeige:

$$a. \ Ker(\varphi_f) = Ker\left(\varphi_{f_{U_1}}\right) \cap Ker\left(\varphi_{f_{U_2}}\right).$$

b. μ_f ist ein kgV $(\mu_{f_{u_1}}, \mu_{f_{u_2}})$.

Hinweis: Beachte, daß für $g\in K[t]$ gilt $g\big(M_B^B(f)\big)=M_B^B\big(g(f)\big).$ Wieso?

Aufgabe 20: Schreibe eine Prozedur min_poly , die eine quadratische Matrix $A \in Mat(n, K)$ einliest und das Minimalpolynom von A zurückgibt. Man verwende folgenden Algorithmus:

INPUT: $A \in Mat(n, K)$

OUTPUT: μ_A

- 1. Schritt Falls A nicht quadratisch ist, gib 0 zurück.
- **2. Schritt** Bilde die Potenzen $A^0, ..., A^n$ und schreibe die Matrizen in Form von Spaltenvektoren der Länge n^2 in eine Matrix $B \in Mat(n^2 \times (n+1), K)$.
- **3. Schritt** Berechne eine Parametrisierung von Lös(B, 0).
- **4. Schritt** Verwende die Koeffizienten der ersten Spalte der Parametrisierung als Koeffizienten eines Polynoms und gib dieses zurück.