Prof. Dr. Gert-Martin Greuel

Dr. Thomas Keilen

Lineare Algebra II

Abgabetermin: Montag, 05/07/2004, 13:00 Uhr

Die Singular-Aufgabe ist erst am Donnerstag, den 08. Juli, um 08:00 Uhr einzureichen.

Aufgabe 33: Zeige, durch $((x_1, x_2, x_3)^t, (y_1, y_2, y_3)^t) := x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + x_2y_3 + x_3y_2 + 2x_3y_3$ für $(x_1, x_2, x_3)^t, (y_1, y_2, y_3)^t \in \mathbb{R}^3$ wird ein Skalar-produkt auf \mathbb{R}^3 definiert.

Aufgabe 34: [Adjungierte Abbildung]

Es sei $(V,(\cdot,\cdot))$ ein endlich-dimensionaler euklidischer bzw. unitärer Raum und $f\in End_K(V)$. Zeige:

- a. Es gibt genau ein $f^* \in End_K(V)$, die sogenannte *Adjungierte* von f, mit $(f(x),y)=(x,f^*(y))$ für alle $x,y\in V$.
- b. Ist $B=(x_1,\ldots,x_n)$ eine Basis von V und $G=\big((x_i,x_j)\big)_{i,j=1,\ldots,n}\in Mat(n,K)$ die sogenannte *Gramsche Matrix* von B, dann gilt G ist invertierbar und

$$M_B^B(f^*) = \overline{G}^{-1} \circ \overline{M_B^B(f)}^t \circ \overline{G}.$$

Insbesondere gilt, ist B eine Orthonormalbasis, dann ist $M_B^B(f^*)$ die adjungierte Matrix von $M_B^B(f)$.

Hinweise, in Teil a. betrachte man eine ONB $B=(x_1,\ldots,x_n)$ und definiere $f^*(x_i)$ als Linearkombination der x_j in geeigneter Weise. In Teil b. zeige man zunächst $G\circ \overline{M_B^B(f^*)}=M_B^B(f)^t\circ G$. Für die Invertierbarkeit von G zeige man $G=A^t\circ \overline{A}$ mit $A=T_D^B$, wobei D ein Orthonormalbasis von V ist.

Aufgabe 35: [Äquivalente Normen]

Es sei $K=\mathbb{R}$ oder $K=\mathbb{C}$ und V ein K-Vektorraum. Zwei Normen $\|\cdot\|$ und $\|\cdot\|$ auf V heißen *äquivalent*, kurz $\|\cdot\|\sim |\cdot|$, falls es Konstanten $\mathfrak{m}, M\in \mathbb{R}_{>0}$ gibt mit $\mathfrak{m}\cdot \|x\|\leq |x|\leq M\cdot \|x\|$ für alle $x\in V$. Zeige:

- a. ~ ist eine Äquivalenzrelation auf der Menge der Normen auf V.
- b. Je zwei Normen $\|\cdot\|$ und $|\cdot|$ auf $K^{\mathfrak n}$ sind äquivalent.

Hinweis: In b. reicht es, den Fall $\|\cdot\| = \|\cdot\|_2$ zu betrachten. Man zeige zunächst die Existenz von M und folgere daraus, daß die Abbildung $|\cdot|: \left(K^n, \|\cdot\|_2\right) \to \left(\mathbb{R}, |\cdot|\right)$ stetig ist. Um m zu finden, verwende man sodann aus der Analysis, daß $S^{n-1} = \left\{x \in K^n \mid \|x\|_2 = 1\right\}$ kompakt in $\left(K^n, \|\cdot\|_2\right)$ ist und daß stetige Funktionen auf einem Kompaktum ihr Minimum annehmen.

Aufgabe 36: Schreibe eine rekursive Singular-Prozedur sgauss, die eine symmetrische Matrix $A \in Mat(n, K)$ einliest und mittels des symmetrischen Gauß-Algorithmus auf Diagonalgestalt transformiert. Dabei verwende man den folgenden Algorithmus:

INPUT: $A \in Mat(n, K)$ symmetrisch.

Output: $D \in Mat(n,K)$ Diagonalmatrix mit $\exists T \in Gl_n(K) : T^t \circ A \circ T$ Diagonalgestalt hat.

- 1. Schritt Überprüfe, ob A symmetrisch ist.
- **2. Schritt** Man suche in der ersten Spalte von A den ersten Eintrag, der nicht Null ist. Existiert ein solcher, merke man sich die Zeilennummer z, sonst gehe man zu Schritt 5.
- **3. Schritt** Ist $z \neq 1$, addiere die z-te Zeile von A zur ersten und die z-te Spalte zur ersten.
- **4. Schritt** Für k = 2,...,n = ncols(A) addiere man das -A[1,k]/A[1,1]-fache der ersten Zeile von A zur k-ten und das -A[1,k]/A[1,1]-fache der ersten Spalte zur k-ten.
- **5. Schritt** Falls n > 1, dann erzeuge man eine Matrix B, indem man aus A die erste Zeile und die erste Spalte streicht. Ferner rufe man die Prozedur sgauss mit B auf und speichere das Ergebnis in submat(A, 2..n, 2..n).
- **6. Schritt** Man gebe A zurück.