Prof. Dr. Gert-Martin Greuel

Dr. Thomas Keilen

Lineare Algebra II

Abgabetermin: Montag, 26/07/2004, 13:00 Uhr

Aufgabe 41: Bestimme eine orthogonale Matrix $T \in O(3)$, die die folgende symmetrische Matrix $A \in Mat(3, \mathbb{R})$ diagonalisiert:

$$A = \left(\begin{array}{rrr} 4 & -2 & 0 \\ -2 & 3 & 2 \\ 0 & 2 & 2 \end{array}\right).$$

Aufgabe 42: Es sei $(V, (\cdot, \cdot))$ ein endlich-dimensionaler euklidischer bzw. unitärer Raum und $f \in End_K(V)$. Zeige:

- a. Ist f normal und sind $\lambda, \mu \in K$ mit $\lambda \neq \mu$, dann gilt $Eig(f, \lambda) = Eig(f^*, \overline{\lambda})$ und $Eig(f, \lambda) \perp Eig(f, \mu)$.
- b. Ist $K = \mathbb{C}$ und ist f normal, dann ist f diagonalisierbar.
- c. Ist $K = \mathbb{C}$, dann sind gleichwertig:
 - (a) f ist normal.
 - (b) Es gibt eine Orthonormalbasis B aus Eigenvektoren.

Hinweis: In Teil b. betrachte man zunächst den Fall f selbstadjungiert und $f^2=0$; dann untersuche man den Fall f normal und $f^2=0$, wobei man die Abbildung $f^*\circ f$ betrachte; daraus leite man den Fall $\mu_f=t^s$ her; und schließlich führe man den allgemeinen Fall auf diesen zurück. – Man verwende ohne expliziten Beweis Aussagen wie $(f^*)^*=f$, $(f\circ g)^*=g^*\circ f^*$ oder $(g-\lambda id)^*=g^*-\overline{\lambda}id$, die unmittelbar durch Betrachtung einer Matrixdarstellung der Abbildungen folgen.

Aufgabe 43: Es sei V ein endlich-dimensionaler unitärer Raum und $f \in End_{\mathbb{C}}(V)$ so, daß es ein $\mathfrak{m} \in \mathbb{N}$ gibt mit $f^{\mathfrak{m}} = id_{V}$. Zeige, dann sind die folgenden Aussagen äquivalent:

- a. f ist unitär.
- b. f ist normal.
- c. Für Eigenwerte $\lambda \neq \mu$ von f gilt Eig(f, λ) \perp Eig(f, μ).