also

für alle u, die in diesem Winkelraum längs irgend eines Weges $\rightarrow \infty$ gehen. Soll demnach $\lim_{n \to \infty} \frac{\partial^n u}{\partial n}$ nicht gegen ∞ gehen, so muss der Weg in dem restlichen Winkelraum $-\alpha \leq \beta \leq + < 1$ iegen. Für diesen Winkelraum ergibt sich 0 als Grenzwert $\frac{\partial^n u}{\partial n}$ für auf beliebigen Weg $- > \infty$ gehendes u.

Zum Beweis dieser Behauptung betrachten wir einen in diesem Winkelraum ins Uhendliche führenden Weg. Dann trifft er alle Parallelen $\mathbf{x} = (V + \frac{A}{2}) R$. Setze ich jetzt $\frac{M \cdot N}{M} = X + i \mathbf{k}$, so wird für den Schnittpunkt des Weges mit einer dieser Parallelen

$$X = (-1)^{\nu} X_{2} \cos iy$$

$$Y = (-1)^{\nu+1} \frac{y}{y_{2}} \cos iy$$

da für diese Parallelen

$$X + iy = \frac{x \sin(y + \frac{1}{2})R \cos iy}{y^2} - i \frac{y \sin(y + \frac{1}{2})R \cos iy}{y^2}$$

Doch ist in diesem Winkelraum $\times > 0$, $\cos iy > 0$, $\gamma^2 > 0$.

Demnach ist $\cos X = (-1)^2$: das bedeutet, dass X dauernd das Vorzeichen wechselt. Da aber ein Grenzwert existieren soll, so muss dieser = 0 sein; also $X \rightarrow 0$.

Der Grenzwert für Y ergibt sich leicht, wenn man bedenkt, dass $\frac{Y}{\sqrt{2}}$ beschränkt ist im Winkelraum $\frac{Y}{\sqrt{2}}$ \mathcal{L} \mathcal{C} ; \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} und es folgt lim $\mathcal{L} \to 0$.