Ist num $\ell \neq \nu\pi$, dann haben diese beiden Gleichungen dasselbe Wurzelpaar und \bar{u} ; d.h. $u_r = u_r$. Daraus felgt, dass

1. Singularitätsstelle ist, wenn $\mathcal{G}(\mathcal{L}) = \mathbf{u}_{\bullet}$,

Regularitätsstelle dagegen, wenn $\mathcal{G}(\ell_s) \neq u_o$ ist.

Nehmen wir an, dass $\mathcal{G}(\ell) \neq V_0$ ist, so sind Singularitätsstellen nur für reelle ℓ_0 möglich, für die $\ell_0 \ell_0 \ell_0 > \ell_0$. Sohneiden wir die ℓ_0 —Ebene von ℓ_0 aus bis ins Unendliche längs der reellen Achse auf, so müsste sich dann $u = \mathcal{G}(\ell)$ in die ganze so aufgeschnittene ℓ_0 —Ebene fortsetzen lassen. Das führt aber zu einem Widerspruch, sobald wir einen Weg in der u-Ebene angeben können, der $u = \ell_0$ mit $u = \ell_0$ se verbindet, dass für die u-Werte dieses Weges ℓ_0 = f(u) längs einer Eurve läuft, die ganz in der aufgeschnittenen Ebene verläuft. Denn wenn wir einen derartigen Weg angeben können, so ist zunnächst ja $f(u_0) = \ell_0$, da $u_0 - \ell_0$ sin $u_0 = \ell_0$, also

ist. Anderseits lässt sich dann u = g(e)längs dieses Weges von e = 0 bis e = e fortsetzen, also $u = g(f(u)), u_0 = g(f(u))$, was unserer Annahme $u_0 \neq g(e)$ widerspricht. Ein solcher Weg ist aber leicht zu finden: Man braucht nur den Weg von u = e nach u = e, so zu führen, dass er innerhalb des Streifenes verläuft, der festgelegt ist durch die Ungleichungen:



