rechten Komponente der Störungskraft; während o nur von der in der Bahnebene normal zum Radiusvektor wirkenden Komponente abhängt.

Wir wenden die Formel ()

2). an auf den Vektor mit der Länge f mit der Richtung der Apsidenlinie.

Als V_a im X-System hatten wir erhalten

Bei Bildung der Komponenten von V_a im \mathcal{H} -System beachten wir, dass rechts kovariante Bildungen zwischen Vektoren stehen. Die Komponenten der Vektoren sind

Wir erhalten also als Komponenten von f im ${\mathcal H}$ -System:

Fur V_T ergibt sich wegen $f = \mu \ell$: $V_T = (\mu \dot{e}, o, o)$