$$\dot{\mathbf{t}} = 0$$
 a = const.
 $\dot{\mathbf{t}} = 0$ also c = const.
 $\dot{\mathbf{e}} = 0$ e = const.

Ausserdem ergibt sich $\mathcal{L} = n$, da $w_1 = R = 0$. Für konstantes n ist aber wegen $\mathcal{L} = n$ (t-t₀)

$$l = n - n \frac{dt_0}{dt}$$

Diese Komponenten von der

Form des Bict-Savarteschen

Gesetzes.

$$X_{1} = \lambda \frac{x_{1}y_{3} - x_{3}y_{2}}{\gamma^{3}}$$

$$X_{2} = \lambda \frac{x_{3}y_{4} - x_{5}y_{3}}{\gamma^{3}}$$

$$X_{3} = \lambda \frac{x_{1}y_{2} - x_{5}y_{3}}{\gamma^{3}}$$

Demnach ware für diese X .:

$$\frac{d^2 x_1}{dt^2} + \frac{\mu x_2}{\tau_1} = \chi_2$$

die Differentialgleichung eines elektrischen und eines überlagerten magnetischen Feldes mit einer elektrischen Ladung und einem Magnetpol im Ursprung. Für diese X_{∞} ergibt sich wegen $x_{\infty} = y_{\infty}$: