$U = U(x_1x_2, x_3x_4)$ sei orthogonalinvariant und homogen von der Dimension k. Gesucht werden sollen jetzt die Kösungen dieses Bewegungsproblems, für die das Dreieck O \mathbb{Z} P ähmlich bleibt. Bezeichne ich die Radienvektoren OP, mit q_1 , OP mit q_2 , den Winkel (q_1q_2) mit q_3 und den Winkel zwischen q und der K-Achse mit q_4 , so heisst also die einschränkende Bedingung: $\frac{q_2}{q_3} = \text{konst.}$

Wir transformieren nun mit Hilfe einer erweiterten Punkttransformation die x_{α} in q_{ω} , sodass die y_{ω} in p_{ω} übergehen, die sich bestimmen aus

so wird

$$p_{1} = y_{1} \cos (93 + 94) + y_{2} \sin (93 + 94)$$

$$p_{2} = y_{3} \cos 93 + y_{4} \sin 94$$

$$p_{3} - x_{1}y_{2} - x_{2}y_{1}$$

$$p_{4} = x_{1}y_{2} - x_{2}y_{1} + x_{3}y_{4} - x_{4}y_{3}$$

Demnach ist geometrisch p die Projektion des Geschwindigkeitsvek-