Dann ergeben sich), f, und f_z durch Koeffizientenvergleichung, wenn wir L G und Q durch L, f, und f_z ausdrücken. So folgt

Es ist dann zweckmässig, eine neue kanonische Transformation zu suchen, sodass die 2. und 5. Variable klein sind mit \mathcal{L}_{s} , die 3. und 6. mit \mathcal{G}_{s} . Dies leistet die Berührungstransformation

WO

$$\mathcal{L} = \mathcal{L}.$$

$$\mathcal{J} = 1$$

$$\mathcal{J}_{1} = 1$$

$$\mathcal{J}_{2} = 1$$

$$\mathcal{J}_{3} = 1$$

$$\mathcal{J}_{2} = 1$$

$$\mathcal{J}_{3} = 1$$

$$\mathcal{J}_{3}$$

Hier sind \mathcal{G} , und \mathcal{H} , von derselben Grössenordnung wie \mathcal{L} , während hinsichtlich \mathcal{G} dasselbe gilt für \mathcal{G} , und \mathcal{H} . Dass die Transformation kanonisch ist, folgt aus der Differentialbeziehung:

$$\begin{aligned} \lambda \, d\mathcal{L} + \, \omega_1 \, dg_1 + \, \omega_2 \, dg_2 - \left(\lambda \, d\mathcal{L} + \, \gamma_1 \, dg_1 + \, \gamma_2 \, dg_2 \right) \\ &= - \, \frac{1}{2} \, d \left(\, \gamma_1 \, g_1 + \, \gamma_2 \, g_2 \right) + d \left(\, \omega_1 \, g_1 + \, \omega_2 \, g_2 \right) \end{aligned}$$

Denn aus:

folgt