es ist also der Poisson!sche Klammerausdruck

Demnach ist die Aussage, ϕ sei ein Integral des Systems gleichwertig damit, dass der Poisson sche Ausdruck (ϕ \mathcal{H}) verschwindet. Ist jetzt ϕ ein von h umabhängiges Integral, so sind auch alle Ableitungen von ϕ frei von h, sodass dann in (ϕ \mathcal{H}) nur die Ableitungen von \mathcal{H} nicht frei von h sind. Demnach ist der Säkularteil von (ϕ \mathcal{H}) gleich dem Klammerausdruck von ϕ und dem Säkularteil von \mathcal{H} : $[(\phi\mathcal{H})] = (\phi [\mathcal{H}])$ Ist das ϕ Integral, dann ist $(\phi [\mathcal{H}]) = 0$; daraus folgt $(\phi [\mathcal{H}]) = 0$, sodass dann ϕ auch Integral der Säkulargleichungen ist. Hach diesen allgemeinen Vorbemerkungen untersuchen wir die Flächenintegrale des vorstehenden kanonischen Systems. Wir haben für einen Planeten:

$$X_{2}Y_{5} - X_{3}Y_{2} = 6(X_{2}\dot{X}_{3} - X_{3}\dot{X}_{2}) = 6c \text{ sing con } \theta$$

$$= X_{3}Y_{1} - X_{1}Y_{3} = 6(X_{3}\dot{X}_{1} - X_{1}\dot{X}_{2}) = 6c \text{ ning sind}$$

$$X_{1}Y_{2} - X_{2}Y_{1} = 6(Y_{1}\dot{X}_{2} - X_{2}\dot{X}_{1}) = 6c \text{ cos } q$$

Demnach ist

$$X_{2}y_{3} - X_{3}y_{2} = \sqrt{g_{-}^{2}}\Theta^{2} \text{ min } \vartheta = -y_{2}\sqrt{2}-g_{3}-\frac{1}{2}g_{2}$$

$$X_{2}y_{3} - X_{3}y_{3} = -\sqrt{g_{-}^{2}}\Theta^{2} \text{ cos } \vartheta = -\int_{2}^{2}\sqrt{2}-g_{3}-\frac{1}{2}g_{2}$$

$$X_{3}y_{2} - X_{2}y_{3} = \Theta = \mathcal{L}-g_{3}-g_{2}$$

wobei $g_{\cdot} = \frac{1}{2}(g_{\cdot}^{2} + g_{\cdot}^{2})$ ist. Die Flächensätze lauten also in den Variabeln