Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

Tropical Elliptic Curves and their *j*-Invariant (joint work with Eric Katz and Hannah Markwig)

Thomas Markwig

Technische Universität Kaiserslautern

15th February, 2008

・ロト・日本・日本・日本・日本・日本

Main Result

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

"The tropical *j*-invariant is the tropicalisation of the *j*-invariant."

・ロト ・ 日本・ キョト ・ ヨー うらぐ

1. Plane Cubics

Main Object of Interest

A plane curve of degree 3 with equation

$$F = a_{30} \cdot x^3 + a_{21} \cdot x^2 y + a_{12} \cdot x y^2 + a_{03} \cdot y^3 + a_{20} \cdot x^2 + a_{11} \cdot x y + a_{02} \cdot y^2 + a_{10} \cdot x + a_{01} \cdot y + a_{00}$$

where the coefficients a_{ij} belong to some field K.

Notation

$$\mathcal{A} = \{(i, j) \mid a_{ij} \neq 0\} = \operatorname{supp}(F)$$
$$\underline{a} = (a_{ij} \mid (i, j) \in \mathcal{A})$$
$$C_F = \{(X, Y) \in \mathcal{K}^2 \mid F(X, Y) = 0\}$$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

・ロト・(部・・ヨ・・日・)のへの

Tropicalisation

Definition

On $(\mathbb{K}^*)^2$ we have the tropicalisation

$$\mathsf{Trop}: (\mathbb{K}^*)^2 \longrightarrow \mathbb{R}^2: (X, Y) \mapsto (\mathsf{ord}(X), \mathsf{ord}(Y))$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$\mathcal{T}_{F} = \operatorname{Trop} \left(C_{F} \cap (\mathbb{K}^{*})^{2} \right) \subset \mathbb{R}^{2}.$$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ ・ 日 ・

Tropicalisation

Definition

On $(\mathbb{K}^*)^2$ we have the tropicalisation

$$\mathsf{Trop}: (\mathbb{K}^*)^2 \longrightarrow \mathbb{R}^2: (X, Y) \mapsto (-\operatorname{ord}(X), -\operatorname{ord}(Y))$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$\mathcal{T}_{F} = \operatorname{Trop}\left(C_{F} \cap (\mathbb{K}^{*})^{2}\right) \subset \mathbb{R}^{2}.$$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ ・ 日 ・

Tropicalisation

Definition

On $(\mathbb{K}^*)^2$ we have the tropicalisation

$$\mathsf{Trop}: (\mathbb{K}^*)^2 \longrightarrow \mathbb{R}^2: (X, Y) \mapsto \left(-\operatorname{ord}(X), -\operatorname{ord}(Y)\right)$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$\mathcal{T}_{\textit{F}} = \mathsf{Trop}\left(\mathcal{C}_{\textit{F}} \cap (\mathbb{K}^*)^2
ight) \subset \mathbb{R}^2.$$

Problem

- Trop forgets an awful lot of information!
- The definition is not too helpful to compute T_F .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Tropical Elliptic

Tropical Curves

Find the vertices of the tropical curve T_F with

 $trop(F) = max\{3x, 3y, x + y + 1, 0\}!$

•
$$3x = 3y = x + y + 1 \ge 0 \quad \rightsquigarrow \quad (x, y) = (1, 1).$$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

Find the vertices of the tropical curve T_F with

 $trop(F) = max\{3x, 3y, x + y + 1, 0\}!$

•
$$3x = 3y = x + y + 1 \ge 0 \iff (x, y) = (1, 1).$$

•
$$3x = x + y + 1 = 0 \ge 3y \quad \rightsquigarrow \quad (x, y) = (0, -1).$$

•
$$3y = x + y + 1 = 0 \ge 3x \iff (x, y) = (-1, 0).$$

• $3x = 3y = 0 \ge x + y + 1 \iff \emptyset$.

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

Find the vertices of the tropical curve T_F with

 $trop(F) = max\{3x, 3y, x + y + 1, 0\}!$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

(日) (日) (日) (日) (日) (日) (日)

Find the vertices of the tropical curve \mathcal{T}_F with

 $trop(F) = max\{3x, 3y, x + y + 1, 0\}!$

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

(日) (日) (日) (日) (日) (日) (日)

Main Result

Theorem

When deg(
$$F$$
) = 3, $g(T_F) = 1$ and $u_{ij} = ord(a_{ij})$, then

$$j(\mathcal{T}_{\mathcal{F}}) = -ord_u(j) \leq -ord(j(\mathcal{C}_{\mathcal{F}})).$$

If u lies in a full dimensional cone of the secondary fan of A, then

 $j(\mathcal{T}_F) = -\operatorname{ord}(j(C_F)).$

Corollary

If deg(F) = 3 and ord ($j(C_F)$) \geq 0, then T_F has no cycle.

Tropical Elliptic Curves

Elliptic Curves

Tropical Curves

Main Result

####