Tropical Elliptic Curves and their j-Invariant

 (joint work with Eric Katz and Hannah Markwig)Thomas Markwig

Technische Universität Kaiserslautern
15th February, 2008

Main Result
"The tropical j-invariant is the tropicalisation of the j-invariant."

1. Plane Cubics

Main Object of Interest

A plane curve of degree 3 with equation

Elliptic Curves

Tropical Curves

$$
\begin{aligned}
F=a_{30} \cdot & x^{3}+a_{21} \cdot x^{2} y+a_{12} \cdot x y^{2}+a_{03} \cdot y^{3} \\
& +a_{20} \cdot x^{2}+a_{11} \cdot x y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{01} \cdot y+a_{00}
\end{aligned}
$$

where the coefficients $a_{i j}$ belong to some field K.

Notation

$$
\begin{aligned}
& \mathcal{A}=\left\{(i, j) \mid a_{i j} \neq 0\right\}=\operatorname{supp}(F) \\
& \underline{a}=\left(a_{i j} \mid(i, j) \in \mathcal{A}\right) \\
& C_{F}=\left\{(X, Y) \in K^{2} \mid F(X, Y)=0\right\}
\end{aligned}
$$

Tropicalisation

Definition

On $\left(\mathbb{K}^{*}\right)^{2}$ we have the tropicalisation

$$
\text { Trop : }\left(\mathbb{K}^{*}\right)^{2} \longrightarrow \mathbb{R}^{2}:(X, Y) \mapsto(\operatorname{ord}(X), \operatorname{ord}(Y))
$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$
\mathcal{T}_{F}=\operatorname{Trop}\left(C_{F} \cap\left(\mathbb{K}^{*}\right)^{2}\right) \subset \mathbb{R}^{2} .
$$

Tropicalisation

Definition

On $\left(\mathbb{K}^{*}\right)^{2}$ we have the tropicalisation

$$
\text { Trop : }\left(\mathbb{K}^{*}\right)^{2} \longrightarrow \mathbb{R}^{2}:(X, Y) \mapsto(-\operatorname{ord}(X),-\operatorname{ord}(Y))
$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$
\mathcal{T}_{F}=\operatorname{Trop}\left(C_{F} \cap\left(\mathbb{K}^{*}\right)^{2}\right) \subset \mathbb{R}^{2} .
$$

Tropicalisation

Definition

On $\left(\mathbb{K}^{*}\right)^{2}$ we have the tropicalisation

$$
\text { Trop : }\left(\mathbb{K}^{*}\right)^{2} \longrightarrow \mathbb{R}^{2}:(X, Y) \mapsto(-\operatorname{ord}(X),-\operatorname{ord}(Y))
$$

and thus for $F \in \mathbb{K}[x, y]$ we have

$$
\mathcal{T}_{F}=\operatorname{Trop}\left(C_{F} \cap\left(\mathbb{K}^{*}\right)^{2}\right) \subset \mathbb{R}^{2} .
$$

Problem

- Trop forgets an awful lot of information!
- The definition is not too helpful to compute \mathcal{T}_{F}.

Example (continued)

Find the vertices of the tropical curve \mathcal{T}_{F} with

$$
\operatorname{trop}(F)=\max \{3 x, 3 y, x+y+1,0\}!
$$

- $3 x=3 y=x+y+1 \geq 0 \rightsquigarrow(x, y)=(1,1)$.

Example (continued)

Find the vertices of the tropical curve \mathcal{T}_{F} with

$$
\operatorname{trop}(F)=\max \{3 x, 3 y, x+y+1,0\}!
$$

- $3 x=3 y=x+y+1 \geq 0 \leadsto(x, y)=(1,1)$.
- $3 x=x+y+1=0 \geq 3 y \rightsquigarrow(x, y)=(0,-1)$.
- $3 y=x+y+1=0 \geq 3 x \rightsquigarrow(x, y)=(-1,0)$.
- $3 x=3 y=0 \geq x+y+1 \rightsquigarrow \emptyset$.

Example (continued)

Find the vertices of the tropical curve \mathcal{T}_{F} with

$$
\operatorname{trop}(F)=\max \{3 x, 3 y, x+y+1,0\}!
$$

Example (continued)

Find the vertices of the tropical curve \mathcal{T}_{F} with

$$
\operatorname{trop}(F)=\max \{3 x, 3 y, x+y+1,0\}!
$$

Main Result

Theorem

When $\operatorname{deg}(F)=3, g\left(\mathcal{T}_{F}\right)=1$ and $u_{i j}=\operatorname{ord}\left(a_{i j}\right)$, then

$$
j\left(\mathcal{T}_{F}\right)=-\operatorname{ord}_{u}(j) \leq-\operatorname{ord}\left(j\left(C_{F}\right)\right) .
$$

If u lies in a full dimensional cone of the secondary fan of \mathcal{A}, then

$$
j\left(\mathcal{T}_{F}\right)=-\operatorname{ord}\left(j\left(C_{F}\right)\right) .
$$

Corollary

If $\operatorname{deg}(F)=3$ and $\operatorname{ord}\left(j\left(C_{F}\right)\right) \geq 0$, then \mathcal{T}_{F} has no cycle.

