Commutative Algebra

Dr. Thomas Markwig *

April 29, 2015

Contents

1. Rings and Ideals 3
A). Basics 3
B). Prime Ideals and Local Rings 13
2. Modules and linear maps 20
A). Basics 20
B). Finitelv generated modules 24
C). Exact Sequences 29
D). Tensor Products 36
3. Localisation 47
4. Chain conditions 59
A). Noetherian and Artinian rings and modules 59
B). Noetherian Rings 64
C). Artinian rings 66
D). Modules of finite length 70
5. Primary decomposition and Krull's Principle Ideal Theorem 73
A). Primary decomposition 73
B). Krull's Principal Ideal Theorem 85
6. Integral Ring Extensions 92
A). Basics 92
B). Going-Up Theorem 98
C). Going-Down Theorem 101
7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension 107
A). Hilbert's Nullstellensatz 107
B). Noether Normalisation 110
8. Valuation Rings and Dedekind Domains 121
A). Valuation Rings 121
B). Dedekind Domains 132
C). Fractional Ideals, Invertible Ideals, Ideal Class Group 138

1. Rings and Ideals

A). Basics

Definition 1.1. A (commutative) ring (with 1$)(R,+, \cdot)$ is a set R with two binary operations, such that
(a) $(R,+)$ is an abelian group
(b) (R, \cdot) is associative, commutative and contains a 1 - element.
(c) The distributive laws are satisfied.

Note.

- We will say "ring", instead of "commutative ring with 1 ".
- We will usually write " R ", instead of " $(R,+, \cdot)$ ".
- Only the multiplicative inverses are missing for a field.
- If $0_{R}=1_{R}$, then $R=\{0\}$

Proof. Let $r \in R$. Then

$$
\begin{aligned}
0+r & =0+1 \cdot r=(0+1) \cdot r \\
& =(1+1) \cdot r=r+r \\
& \Longrightarrow r=0
\end{aligned}
$$

Example 1.2.

(a) Fields are rings, e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z} / p \mathbb{Z}$ for p prime.
(b) \mathbb{Z} is a ring

1. Rings and Ideals

(c) If R is a Ring $\Longrightarrow R \llbracket \underline{x} \rrbracket=\left\{\sum_{|\alpha|=0}^{\infty} a_{\alpha} \underline{x}^{\alpha} \mid a_{\alpha} \in R\right\}$, where:

$$
\begin{aligned}
\underline{x} & :=\left(x_{1}, \ldots, x_{n}\right) \\
\alpha & :=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n} \\
\underline{x}^{\alpha} & :=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \\
|\alpha| & :=\alpha_{1}+\ldots+\alpha_{n}
\end{aligned}
$$

is the ring of formal power series over R in the indeterminance x_{1}, \ldots, x_{n}. The operations are defined as

$$
\begin{aligned}
& \sum_{|\alpha|=0}^{\infty} a_{\alpha} \underline{x}^{\alpha}+\sum_{|\alpha|=0}^{\infty} b_{\alpha} \underline{x}^{\alpha}=\sum_{|\alpha|=0}^{\infty}\left(a_{\alpha}+b_{\alpha}\right) \underline{x}^{\alpha} \\
& \sum_{|\alpha|=0}^{\infty} a_{\alpha} \underline{x}^{\alpha} \cdot \sum_{|\beta|=0}^{\infty} b_{\beta} \underline{x}^{\beta}=\sum_{|\gamma|=0}^{\infty}\left(\sum_{\alpha+\beta=\gamma} a_{\alpha} b_{\beta}\right) \underline{x}^{\gamma}
\end{aligned}
$$

Notation:

$$
\operatorname{ord}\left(\sum_{|\alpha|=0}^{\infty} a_{\alpha} \underline{x}^{\alpha}\right):=\left\{\begin{array}{l}
\infty, \text { if } a_{\alpha}=0 \quad \forall \alpha \\
\min \left\{|\alpha| \text { s.t. } a_{\alpha} \neq 0\right\}, \text { otherwise }
\end{array}\right.
$$

(d) $\mathbb{R}\{\underline{x}\}, \mathbb{C}\{\underline{x}\}$ are the rings of convergent power series over \mathbb{R} and \mathbb{C}.
(e) If M is a set and R a ring, then $R^{M}:=\{f: M \rightarrow R \mid f$ is a map $\}$ is a ring with respect to :

$$
\begin{aligned}
(f+g)(m) & :=f(m)+g(m) \\
(f \cdot g)(m) & :=f(m) g(m)
\end{aligned}
$$

(f) If $R_{\lambda}, \lambda \in \Lambda$ is a family of rings, then $\prod_{\lambda \in \Lambda} R_{\lambda}=\left\{\left(a_{\lambda}\right)_{\lambda \in \Lambda} \mid a_{\lambda} \in R_{\lambda}\right\}$, the direct product, is a ring with respect to componentwise operations.

Definition 1.3. Let $(R,+, \cdot)$ be a ring, $I \subseteq R$
(a) I is a subring of $R: \Longleftrightarrow(I,+, \cdot)$ is a ring with respect to the same operations restricted to I.
(b) I is an ideal of $R: \Longleftrightarrow$

- $I \neq \emptyset$
- $\forall a, b \in I: a+b \in I$
- $\forall a \in I, r \in R: r a \in I$

Notation: $I \preccurlyeq R$

1. Rings and Ideals

(c)

$$
\begin{aligned}
\langle I\rangle & :=\bigcap_{I \subseteq J \& R} J \\
& =\left\{\sum_{i=1}^{n} r_{i} a_{i} \mid n \in \mathbb{N}_{0}, r_{i} \in R, a_{i} \in I\right\}
\end{aligned}
$$

is the ideal generated by I.
(d) If $I=\{a\}$, then $\langle a\rangle=a R:=\{a r \mid r \in R\}$ is a principal ideal.
(e) If $I \preccurlyeq R$, then

$$
R / I:=\{r+I \mid r \in R\}
$$

is the quotient ring and it's a ring with respect to operations via representatives.

Example 1.4.

(a) $\mathbb{Z}_{p}:=\left\{\left.\frac{a}{p^{n}} \right\rvert\, a \in \mathbb{Z}, n \in \mathbb{N}\right\} \leq \mathbb{Q}$ for p prime
(b) Let R be a ring.

$$
R[\underline{x}]:=\left\{\sum_{|\alpha|=0}^{n} a_{\alpha} \underline{x}^{\alpha} \mid a_{\alpha} \in R, n \in \mathbb{N}\right\} \leq R \llbracket \underline{x} \rrbracket
$$

is called the polynomial ring in the indeterminance $\left(x_{1}, \ldots, x_{n}\right)=\underline{x}$. We define:

$$
\operatorname{deg}\left(\sum_{|\alpha|=0}^{n} a_{\alpha} \underline{x}^{\alpha}\right)= \begin{cases}-\infty & \text { if } a_{\alpha}=0 \forall \alpha \\ \max \left\{|\alpha| \text { s.t. } a_{\alpha} \neq 0\right\} & \text { else }\end{cases}
$$

(c) R is a field $\Longleftrightarrow\{0\}$ and R are the only ideals.

Proof. We show two directions:
" \Longrightarrow ":

$$
\begin{aligned}
& I \preccurlyeq R, I \neq\{0\} \\
\Longrightarrow & \exists a \in I: a \neq 0 \\
\Longrightarrow & \exists a^{-1} \in R \\
\Longrightarrow & a^{-1} a=1 \in I \\
\Longrightarrow & \forall r \in R: r \cdot 1=r \in I \\
\Longrightarrow & I=R
\end{aligned}
$$

1. Rings and Ideals

$$
\text { "œ": Let } 0 \neq r \in R \text {, then } \begin{aligned}
0 & \neq\langle r\rangle \preccurlyeq R \\
& \Longrightarrow\langle r\rangle=R, \text { but } 1 \in R \\
& \Longrightarrow \exists s \in R: s r=1 \\
& \Longrightarrow \mathrm{R} \text { is a field. }
\end{aligned}
$$

(d) $I \preccurlyeq \mathbb{Z} \Longleftrightarrow \exists n \in \mathbb{Z}:\langle n\rangle=I$. In particular, every ideal in \mathbb{Z} is a principal ideal.

Proof.
" $\Longleftarrow "$ is trivial.
" "": If $I=\{0\}$, then $I=\langle 0\rangle$, so let $I \neq\{0\}$. Choose $n \in I$ minimal, such that $n>0$. We want to show that $I=\langle n\rangle$:

$$
\begin{array}{rl}
" \supseteq ": ~ \\
" \subseteq ": ~ L e t ~ & a \in I \\
& \stackrel{\text { d.w.r. }}{\Longrightarrow} \exists q, r \in \mathbb{Z}: a=q n+r, 0 \leq r<n \\
& \Longrightarrow r=a-q n \in I \\
& \xlongequal{r<n} r=0 \\
& \Longrightarrow a=q n \in\langle n\rangle
\end{array}
$$

(e) Let K be a field, then $I \preccurlyeq K[x] \Longleftrightarrow \exists f \in K[x]: I=<f>$

Proof. As for the integers, just choose $f \in I \backslash\{0\}$ of minimal degree
(f) Let K be a field, then: $I \preccurlyeq K \llbracket x \rrbracket \Longleftrightarrow \exists n \geq 0: I=\left\langle x^{n}\right\rangle$

Proof. postponed to 1.8 (c)
Definition 1.5 (Operations on ideals).
Let $I, J, J_{\lambda} \preccurlyeq R, \lambda \in \Lambda$

- $I+J:=\langle I \cup J\rangle=\{a+b \mid a \in I, b \in J\} \preccurlyeq R$ is the sum (of ideals).
- $I \cap J:=\{a \mid a \in I, a \in J\} \Vdash R$ is the intersection (of ideals).
- $I \cdot J:=\langle\{a b \mid a \in I, b \in J\}\rangle \preccurlyeq R$ is the product (of ideals).
- $I: J:=\{a \in R \mid a J \subseteq I\} \Vdash R$ is the quotient (of ideals).
- $\sqrt{I}:=\operatorname{rad}(I):=\left\{a \in R \mid \exists n \geq 0: a^{n} \in I\right\} \boxtimes R$ is the radical of I.

1. Rings and Ideals

Proof. (that $\sqrt{I} \preccurlyeq R$)

$$
\begin{aligned}
& -0^{1} \in I \Longrightarrow 0 \in \sqrt{I} \Longrightarrow \sqrt{I} \neq \emptyset \\
& -a \in \sqrt{I}, r \in R \Longrightarrow \exists n: a^{n} \in I \Longrightarrow(r a)^{n}=r^{n} a^{n} \in I \Longrightarrow r a \in \sqrt{I} \\
& -a, b \in \sqrt{I} \Longrightarrow \exists n, m: a^{n}, b^{m} \in I \\
& \quad \Longrightarrow(a+b)^{n+m}=\sum_{k=0}^{n+m}\binom{n+m}{k} a^{k} b^{n+m-k} \in I
\end{aligned}
$$

Note.

- $\sqrt{I \cdot J}=\sqrt{I \cap J}$

Proof.

$$
\begin{aligned}
& " \subseteq ": \checkmark \\
& " \supseteq ": a \in \sqrt{I \cap J} \Longrightarrow \exists n: a^{n} \in I \cap J \Longrightarrow a^{2 n}=a^{n} a^{n} \in I \cdot J \Longrightarrow a \in \sqrt{I \cdot J}
\end{aligned}
$$

- We call $a n n_{R}(I):=\operatorname{ann}(I):=\{0\}: I=\{a \in R \mid a I=\{0\}\}=\{a \in R \mid a b=0 \forall b \in I\} \preccurlyeq R$ the annihilator of I.
- $\sum_{\lambda \in \Lambda} J_{\lambda}:=\left\langle\bigcup_{\lambda \in \Lambda} J_{\lambda}\right\rangle$

$$
=\left\{\sum_{\lambda \in \Lambda} a_{\lambda} \mid a_{\lambda} \in J_{\lambda}, \text { and only finitely many } a_{\lambda} \text { are non-zero. }\right\}
$$

- $\bigcap_{\lambda \in \Lambda} J_{\lambda} \vDash R$
- I and J are called coprime $: \Longleftrightarrow I+J=R \Longleftrightarrow 1 \in I+J$

Example 1.6. Let $R=\mathbb{Z}, I=\langle n\rangle, J=\langle m\rangle$ for $n, m \neq 0$

- $I+J=\langle n, m\rangle=\langle\operatorname{gcd}(n, m)\rangle$
- $I \cap J=\langle l c m(n, m)\rangle$
- $I \cdot J=\langle n m\rangle$
- $I: J=\left\langle\frac{n}{\operatorname{gcd}(n, m)}\right\rangle=\left\langle\frac{l c m(n, m)}{m}\right\rangle$
- $\sqrt{I}=\left\langle p_{1} \cdot \ldots \cdot p_{k}\right\rangle$, if $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ is the prime factorization of n.
- $\operatorname{ann}(I)=\{0\}$

1. Rings and Ideals

- I, J are coprime $\Longleftrightarrow \mathbb{Z}=I+J=\langle\operatorname{gcd}(n, m)\rangle \Longleftrightarrow \operatorname{gcd}(n, m)=1$

Definition 1.7. Let R be a ring, $r \in R$
(a) r is a zero-divisor : $\Longleftrightarrow \exists 0 \neq s \in R: r s=0 \Longleftrightarrow \operatorname{ann}(r) \neq\{0\}$

Note. If $R \neq\{0\}$, then 0 is a zero-divisor by definition. If r is not a zerodivisor, the cancellation laws hold: $a r=b r \Longrightarrow a=b$. (short proof: $a r=$ $b r \Longrightarrow(a-b) r=0 \Longrightarrow a-b=0)$
(b) R is an integral domain(I.D.), if 0 is the only zero-divisor.
(c) $r \in R$ is a unit $: \Longleftrightarrow \exists s \in R: s r=1$

Note. $R^{*}=\{a \in R \mid a$ is a unit $\}$ is a group with respect to multiplication.
(d) r is nilpotent $: \Longleftrightarrow \exists n \geq 1$, s.t. $r^{n}=0$

Note. If $R \neq\{0\}$, then we have:

- r nilpotent $\Longrightarrow r$ is a zero-divisor
- $\sqrt{0}=\{a \in R \mid a$ is nilpotent $\}$
(e) r is idempotent $: \Longleftrightarrow r^{2}=r \Longleftrightarrow r(1-r)=0$

Note. If $r \notin\{0,1\}$ is idempotent, then r is a zero-divisor. Furthermore, 0 and 1 are always idempotent.

Example 1.8.

(a) \mathbb{Z} is an I.D., $\mathbb{Z}^{*}=\{1,-1\}$
(b) If K is a field, then $K[\underline{x}]$ is an I.D. and $K[\underline{x}]^{*}=K^{*}=K \backslash\{0\}$
(c) Consider $R \llbracket x \rrbracket, R$ any ring.
(1) $R \llbracket x \rrbracket^{*}=\left\{f \in R \llbracket x \rrbracket \mid f(0) \in R^{*}\right\}$
(2) x is not a zero-divisor
(3) $f=\sum_{i=0}^{\infty} f_{i} x^{i}$ is nilpotent $\Longrightarrow f_{i}$ are nilpotent $\forall i$

Proof. Exercise.
(4) Proof. (of 1.4 (f))

Claim: $0 \neq I \boxtimes K \llbracket x \rrbracket, K$ a field $\Longleftrightarrow \exists n \geq 0: I=\left\langle x^{n}\right\rangle$
-" " : trivial

1. Rings and Ideals

- " " " Choose $0 \neq g \in I, g=\sum_{i=0}^{\infty} g_{i} x^{i}$ with minimal $\operatorname{ord}(g)=n$

$$
\Longrightarrow g=x^{n} \underbrace{\sum_{i=n}^{\infty} g_{i} x^{i-n}}_{:=h}
$$

$$
\left.\begin{array}{l}
\stackrel{1.8}{\Longrightarrow(c .1)} \Longrightarrow \\
\Longrightarrow
\end{array} \in K \llbracket x \rrbracket^{*}\left(\text { since } h(0)=g_{n} \neq 0\right) ~ 子 x^{n}=g h^{-1} \in I, \text { since } g \in I\right)
$$

Now let $0 \neq f \in I$ be arbitrary

$$
\begin{aligned}
& \Longrightarrow \operatorname{ord}(f) \geq n, \text { by definition of } g \\
& \Longrightarrow f=x^{n} \underbrace{\sum_{i=n}^{\infty} f_{i} x^{i-n}}_{\in K \llbracket x \rrbracket, i-n \geq 0} \in\left\langle x^{n}\right\rangle
\end{aligned}
$$

(d) $R=K[x] /\left\langle x^{2}\right\rangle \Longrightarrow \overline{0} \neq \bar{x}$ is nilpotent, since $\bar{x}^{2}=\overline{0}$
(e) $R=K[x, y] /\langle x \cdot y\rangle \Longrightarrow \overline{0} \neq \bar{x}$ is not nilpotent, but a zero-divisor, since $\bar{x} \bar{y}=\overline{0}$
(f) $R=\mathbb{Z} \oplus \mathbb{Z} \Longrightarrow(\overline{1}, \overline{0})$ is idempotent.

Definition 1.9. Let R and R^{\prime} be rings.
(a) $\varphi: R \longrightarrow R^{\prime}$ is a ringhomomorphism (or a ring extension) $: \Longleftrightarrow$

- $\varphi(a+b)=\varphi(a)+\varphi(b)$
- $\varphi(a b)=\varphi(a) \varphi(b)$
- $\varphi\left(1_{R}\right)=1_{R^{\prime}}$

Notation: $\operatorname{Hom}\left(R, R^{\prime}\right)=\left\{\varphi: R \rightarrow R^{\prime} \mid \varphi\right.$ is a ringhom. $\}$
Note. R^{\prime} is an R-module via $r r^{\prime}=\varphi(r) r^{\prime}$
(b) Let $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right)$

- $\operatorname{Im}(\varphi):=\varphi(R) \leq R^{\prime}$ is the image of φ
- $\operatorname{ker}(\varphi):=\varphi^{-1}(0) \preccurlyeq R$ is the kernel of φ
- φ is a monomorphism/epimorphism/isomorphism : $\Longleftrightarrow \varphi$ is injective/surjective/bijective Note. φ is a Monom. $\Longleftrightarrow \operatorname{ker}(\varphi)=\{0\}$

1. Rings and Ideals

(c) Let $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right), I \preccurlyeq R, J \preccurlyeq R^{\prime}$. Then we define:

- $I^{e}:=\langle\varphi(I)\rangle_{R^{\prime}}$ the extension of I to R^{\prime}
- $J^{c}:=\varphi^{-1}(J) 太 R$ the contraction of J to R
(d) Let $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right)$, then we call $\left(R^{\prime}, \varphi\right)$ an R - algebra. Often we omit φ. Given two R - algebras $\left(R^{\prime}, \varphi\right)$ and $\left(R^{\prime \prime}, \psi\right)$ an R - algebra homomorphism is a $\operatorname{map} \alpha: R^{\prime} \longrightarrow R^{\prime \prime}$, which is a ringhom. such that

commutes, i.e.: $\alpha \circ \varphi=\psi$
Lemma 1.10. Let $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right), I \preccurlyeq R, J \preccurlyeq R^{\prime}$. Then:
(a) $I^{e c} \supseteq I$
(b) $J^{c e} \subseteq J$
(c) $I^{e c e}=I^{e}$
(d) $J^{c e c}=J^{c}$

Proof.
(a) $a \in I \Longrightarrow a \in \varphi^{-1}(\varphi(a)) \subseteq \varphi^{-1}\left(I^{e}\right)=I^{e c}$
(b) $J^{c e}=\langle\underbrace{\varphi\left(\varphi^{-1}(J)\right)}_{\subseteq J}\rangle_{R^{\prime}} \subseteq\langle J\rangle=J$
(c)
"Э": $1.10(\mathrm{a}) \Longrightarrow I^{e c} \supseteq I \Longrightarrow I^{e c e} \supseteq I^{e}$
" \subseteq ": Apply 1.10 (b) to $J:=I^{e}$
(d)

$$
\begin{array}{ll}
" \supseteq ": & J^{c} \preccurlyeq R^{\prime} \stackrel{1.10}{\Longrightarrow} J^{c e c} \supseteq J^{c} \\
" \subseteq ": ~ & 1.10(\mathrm{~b}) \Longrightarrow J^{c e} \subseteq J \Longrightarrow J^{c e c} \subseteq J^{c}
\end{array}
$$

Theorem 1.11 (Homomorphism Theorem).
Let $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right)$

1. Rings and Ideals

(a)

$$
\bar{\varphi}: R / \operatorname{ker}(\varphi) \xrightarrow{\cong} \operatorname{Im}(\varphi), \bar{r} \mapsto \varphi(r)
$$

is a ringisomorphism.
(b) $I \preccurlyeq R \Longleftrightarrow I$ is the kernel of some ringhom.
(c) If $I \preccurlyeq R$, then:

$$
\begin{aligned}
\{J \preccurlyeq R \mid I \subseteq J\} & \rightarrow\{\bar{J} \preccurlyeq R / I\} \\
J & \mapsto J / I
\end{aligned}
$$

is bijective.
Proof. (Easy exercise)
Theorem 1.12 (Chinese remainder theorem).
Let R be a ring, $I_{1}, \ldots, I_{k} \leqslant R$,

$$
\varphi: R \longrightarrow \prod_{i=1}^{k} R / I_{i}: r \mapsto(\bar{r}, \ldots, \bar{r})
$$

(a) If I_{1}, \ldots, I_{k} are pairwise coprime, then

$$
\bigcap_{i=1}^{k} I_{i}=I_{1} \cdot \ldots \cdot I_{k}
$$

(b) φ is surjective $\Longleftrightarrow I_{1}, \ldots, I_{k}$ are pairwise coprime.
(c) φ is injective $\Longleftrightarrow \bigcap_{i=1}^{k} I_{i}=\{0\}$

Note. In particular we have that for I_{1}, \ldots, I_{k} pairwise coprime:

$$
R / I_{1} \cdot . . \cdot I_{k} \cong \prod_{i=1}^{k} R / I_{i}
$$

Proof.
(a) We do an induction on k :

- $k=2$: Show $I_{1} \cap I_{2}=I_{1} \cdot I_{2}$
" \supseteq ": \checkmark
$" \subseteq ": R=I_{1}+I_{2} \Longrightarrow 1=a+b, a \in I_{1}, b \in I_{2}$. Let $c \in I_{1} \cap I_{2}$ be arbitrary $\Longrightarrow c=c \cdot 1=\underbrace{c a}_{\in I_{1} \cdot I_{2}}+\underbrace{c b}_{\in I_{1} \cdot I_{2}} \in I_{1} \cdot I_{2}$

1. Rings and Ideals

- $k-1 \rightarrow k$: By assumption we have $a_{2}, \ldots, a_{k} \in I_{1}, b_{i} \in I_{i}$, such that $1=a_{i}+b_{i} \forall i$.

$$
\begin{aligned}
\Longrightarrow b_{2} \cdot \ldots \cdot b_{k} & =\left(1-a_{2}\right) \cdot \ldots \cdot\left(1-a_{k}\right) \\
& =1+a \text { for some } a \in I_{1} \\
\Longrightarrow 1 & =\underbrace{-a}_{\in I_{1}}+\underbrace{b_{2} \cdot \ldots \cdot b_{k}}_{\in I_{2} \cdot \ldots \cdot I_{k}} \in I_{1}+\left(I_{2} \cdot \ldots \cdot I_{k}\right)
\end{aligned}
$$

Thus we have that I_{1} and $I_{2} \cdot \ldots \cdot I_{k}$ are pairwise coprime.

$$
\begin{aligned}
\stackrel{k=2}{\Longrightarrow} I_{1} \cdot\left(I_{2} \cdot \ldots \cdot I_{k}\right) & =I_{1} \cap\left(I_{2} \cdot \ldots \cdot I_{k}\right) \\
\stackrel{I n d .}{=} & I_{1} \cap\left(I_{2} \cap \ldots \cap I_{k}\right) \\
& =\bigcap I_{i}
\end{aligned}
$$

(b) We prove two directions:
" ": Choose a_{i}, b_{i} as in the proof for (a).

$$
\begin{aligned}
& \Longrightarrow b_{2} \cdot \ldots \cdot b_{k} \equiv \begin{cases}1 & \bmod I_{1} \\
0 & \bmod I_{i}, i \neq 1\end{cases} \\
& \Longrightarrow \varphi\left(b_{2} \cdot \ldots \cdot b_{k}\right)=(\overline{1}, \overline{0}, \ldots, \overline{0}) \in \operatorname{Im}(\varphi) \\
& \Longrightarrow \varphi\left(r b_{2} \cdot \ldots \cdot b_{k}\right)=(\bar{r}, \overline{0}, \ldots, \overline{0}) \in \operatorname{Im}(\varphi)
\end{aligned}
$$

Analogously we have that $(\overline{0}, . ., \underbrace{\bar{q}}_{\text {at } i}, . ., \overline{0})=: \bar{r} e_{i} \in \operatorname{Im}(\varphi) \forall r \in R, i=1 . . k$

$$
\Longrightarrow\left(\overline{r_{1}}, \ldots, \overline{r_{k}}\right)=\sum_{i=1}^{k} \overline{r_{i}} e_{i} \in \operatorname{Im}(\varphi)
$$

$" \Longrightarrow ":$ Let $i \neq j \in\{1 . . k\}$ be arbitrary. Then we have the following surjective chain of homomorphisms:

$$
R \longrightarrow \Pi \quad R / I_{i} \longrightarrow \quad R / I_{i} \oplus R / I_{j}
$$

$$
r \longmapsto(\bar{r}, \ldots, \bar{r}) ;\left(\overline{r_{1}}, \ldots, \overline{r_{k}}\right) \longmapsto\left(\overline{r_{i}}, \overline{r_{j}}\right)
$$

$\Longrightarrow \exists a \in R$, such that $(\pi \circ \varphi)(a)=(\overline{1}, \overline{0})=(\bar{a}, \bar{a})$

$$
\begin{aligned}
\Longrightarrow a & \equiv 1 \quad \bmod I_{i} \\
& \equiv 0 \quad \bmod I_{j}
\end{aligned}
$$

$\Longrightarrow a \in I_{j}$ and $\exists b \in I_{i}: a=1+b$. Thus we have $1=a-b \in I_{i}+I_{j} \Longrightarrow$ I_{i}, I_{j} are coprime.

1. Rings and Ideals

(c)

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\{r \in R \mid \varphi(r)=(\overline{0}, \ldots, \overline{0})\} \\
& =\left\{r \in R \mid r \equiv 0 \quad \bmod I_{i} \forall i\right\} \\
& =\left\{r \in R \mid r \in I_{i} \forall i\right\} \\
& =\bigcap I_{i}
\end{aligned}
$$

Example 1.13. $R=\mathbb{Z}, I_{1}=\langle 2\rangle, I_{2}=\langle 3\rangle, I_{3}=\langle 11\rangle$

$$
\Longrightarrow \mathbb{Z} /\langle\underbrace{2 \cdot 3 \cdot 11}_{66}\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z}^{\mathbb{Z}} / 3 \mathbb{Z} \oplus \mathbb{Z} / 11 \mathbb{Z}
$$

This means that, given $a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ there exists a unique $z \in\{0, . ., 65\}$, such that

$$
\begin{aligned}
z & \equiv a_{1}(2) \\
& \equiv a_{2}(3) \\
& \equiv a_{3}(11)
\end{aligned}
$$

B). Prime Ideals and Local Rings

Definition 1.14.

(a) $\mathfrak{m} \vDash R, \mathfrak{m} \subsetneq R$ is a maximal ideal $: \Longleftrightarrow \forall I \preccurlyeq R:(\boldsymbol{m} \subsetneq I \Longrightarrow I=R) \Longleftrightarrow R / \mathfrak{m}$ is a field (by 1.11 (c) and 1.4 (c))
Note. We write: $\mathfrak{m} \triangleleft \cdot R$ and $\mathfrak{m}-\operatorname{Spec}(R):=\{\mathfrak{m} \mid \boldsymbol{m} \triangleleft \cdot R\}$
(b) $P \preccurlyeq R, P \subsetneq R$ is a prime ideal $: \Longleftrightarrow \forall I, J \preccurlyeq R:(I \cdot J \subseteq P \Longrightarrow I \subseteq P$ or $J \subseteq P)$

$$
\begin{aligned}
& \stackrel{(*)}{\Longleftrightarrow} \forall a, b \in R:(a b \in P \Longrightarrow a \in P \text { or } b \in P) \\
& \Longleftrightarrow R / P \text { is an I.D. } \\
& \Longleftrightarrow \forall I_{1}, \ldots, I_{k} \preccurlyeq R:\left(I_{1} \cdot \ldots \cdot I_{k} \subseteq P \Longrightarrow \exists i: I_{i} \subseteq P\right) \\
& \Longleftrightarrow \forall a_{1}, \ldots, a_{k} \in R:\left(\prod a_{i} \in P \Longrightarrow \exists i: a_{i} \in P\right)
\end{aligned}
$$

Proof. (of (*))

1. Rings and Ideals

- " $\Longrightarrow ":$ Let $a, b \in P$

$$
\begin{aligned}
& \Longrightarrow\langle a b\rangle=\langle a\rangle\langle b\rangle \subseteq P \\
& \Longrightarrow\langle a\rangle \subseteq P \text { or }\langle b\rangle \subseteq P \\
& \Longrightarrow a \in P \text { or } b \in P
\end{aligned}
$$

- "œ": Suppose $I, J \preccurlyeq R$, such that $I \cdot J \subseteq P$, but $I \nsubseteq P, J \nsubseteq P \Longrightarrow \exists a \in$ $I \backslash P, b \in J \backslash P$, but $a b \in P$ 亿

Note. $\operatorname{Spec}(R)=\{P \mid P$ is prime ideal of $R\}$ is called the spectrum of R .
(c)

$$
J(R):=\bigcap_{\mathbf{m} \triangleleft \cdot R} \mathfrak{m} \leqslant R
$$

is the Jacobson radical of R.
(d)

$$
\mathfrak{R}(R):=\bigcap_{P \oiint R \text { prime ideal }} P^{\underline{\underline{1.15}}} \sqrt{\{0\}}=\left\{a \in R \mid \exists n: a^{n}=0\right\}
$$

is the nilradical of R.
Note.
$\mathfrak{N}(R / \mathfrak{N}(R))=\{\overline{0}\}$
Proof. " \supseteq " is trivial, we only show the other inclusion:

$$
\begin{aligned}
& (a+\mathfrak{P}(R))^{n}=\overline{0}=a^{n}+\mathfrak{N}(R) \\
\Longrightarrow & a^{n} \in \mathfrak{N}(R) \\
\Longrightarrow & \exists m:\left(a^{n}\right)^{m}=0 \\
\Longrightarrow & a \in \mathfrak{R}(R) \\
\Longrightarrow & \bar{a}=\overline{0}
\end{aligned}
$$

Proposition 1.15.

$$
I \preccurlyeq R \Longrightarrow \sqrt{I}=\bigcap_{P 太 R \text { prime }, I \subseteq P} P
$$

Proof.

1. Rings and Ideals

$" \subseteq ": a \in \sqrt{I}$ and $P \unlhd R$ prime, s.t. $I \subseteq P$. Show $a \in P:$

$$
a \in \sqrt{I} \Longrightarrow \exists n: a^{n} \in I \subseteq P
$$

$P \xrightarrow{\text { prime }} a \in P$
" \supseteq ": Let $r \in R \backslash \sqrt{I}$. Show: $\exists P \geqq R$ prime, s.t. $I \subseteq P$ and $r \notin P$: Therefore set

$$
M:=\left\{J \preccurlyeq R \mid I \subseteq J \text { and } r^{n} \notin J \forall n \geq 1\right\}
$$

Then $M \neq \emptyset$, since $I \in M$ and M is partially ordered with respect to inclusion of sets.
Note. We now have to use Zorn's Lemma:
"Let (M, \leq) be a partially ordered set s.t. any totally ordered subset of M has an upper bound in M. Then M has a maximal element with respect to \leq."
If we now have a totally ordered subset $\mathcal{J} \subseteq M$, then:

$$
\bigcup_{J \in \mathcal{J}} J \preccurlyeq R \text { and } I \subseteq \bigcup_{J \in \mathcal{J}} J \text { and } r^{n} \notin \bigcup_{J \in \mathcal{J}} J \forall n \geq 1
$$

Thus $\bigcup_{J \in \mathcal{J}} J \in M$ and it is an upper bound for the chain. Thus, by Zorn's lemma, we have a $P \in M$, which is maximal in M with respect to " \subseteq ". We claim: P is a prime ideal:
Suppose $a \cdot b \in P$, s.t. $a \notin P, b \notin P$

$$
\begin{aligned}
& \Longrightarrow\langle a, P\rangle,\langle b, P\rangle \supsetneq P \\
& \Longrightarrow\langle a, P\rangle,\langle b, P\rangle \notin M, \text { since } P \text { is maximal in } M \\
& \Longrightarrow \exists n, m: r^{n} \in\langle a, P\rangle, r^{m} \in\langle b, P\rangle \\
& \Longrightarrow r^{n} r^{m} \in\langle a, P\rangle\langle b, P\rangle \subseteq\langle a b, P\rangle \subseteq P\langle P \in M
\end{aligned}
$$

Hence P is prime and $I \subseteq P$ and $r \notin P$.

Example 1.16.

(a) $\mathfrak{m}-\operatorname{Spec}(R) \subseteq \operatorname{Spec}(R)$
(b) $\quad \bullet \mathfrak{m}-\operatorname{Spec}(\mathbb{Z})=\{\langle p\rangle \mid p$ prime $\}$

- $\operatorname{Spec}(\mathbb{Z})=\mathfrak{m}-\operatorname{Spec}(\mathbb{Z}) \cup\{\langle 0\rangle\}$
- $J(\mathbb{Z})=\{0\}$
- $\mathfrak{\Re}(\mathbb{Z})=\{0\}$
(c) • $\mathfrak{m}-\operatorname{Spec}(K \llbracket x \rrbracket)=\{\langle x\rangle\}$
- $\operatorname{Spec}(K \llbracket x \rrbracket)=\{\langle x\rangle,\langle 0\rangle\}$

1. Rings and Ideals

- $J(K \llbracket x \rrbracket)=\langle x\rangle$
- $\mathfrak{P}(K \llbracket x \rrbracket)=\langle 0\rangle$
(d) • $\mathfrak{m}-\operatorname{Spec}(K[x])=\{\langle f\rangle \mid f$ irred. $\}$
- $\operatorname{Spec}(K[x])=\boldsymbol{m}-\operatorname{Spec}(K[x]) \cup\{\langle 0\rangle\}$
- $J(K[x])=\mathfrak{R}(K[x])=\langle 0\rangle$
(e) Let K be algebraically closed. We will see in 7.19
- $\mathfrak{m}-\operatorname{Spec}(K[x, y])=\{\langle x-a, y-b\rangle \mid a, b \in K\}$ (by Hilbert's Nullstellensatz)
- $\operatorname{Spec}(K[x, y])=\mathbf{m}-\operatorname{Spec}(K[x, y]) \cup\{\langle f\rangle \mid f$ irred. $\} \cup\{\langle 0\rangle\}$
- $J(K[x, y])=\mathfrak{R}(K[x, y])=\langle 0\rangle$
(f) Let K be an algebraically closed field. One can show that:
- $\mathfrak{m}-\operatorname{Spec}(K[x, y] /\langle x y\rangle)=\{\langle\overline{x-a}, \overline{y-b}\rangle \mid a=0$ or $b=0\}$
- $\operatorname{Spec}(K[x, y] /\langle x y\rangle)=\mathfrak{m}-\operatorname{Spec}(..) \cup\{\langle\bar{x}\rangle,\langle\bar{y}\rangle\}$
- $J(K[x, y] /\langle x y\rangle)=\mathfrak{N}(K[x, y] /\langle x y\rangle=\langle\overline{0}\rangle$
(g) - $\operatorname{Spec}\left(K[x] / x^{2}\right)=\mathfrak{m}-\operatorname{Spec}\left(K[x] / x^{2}\right)=\{\langle\bar{x}\rangle\}$
- $J\left(K[x] / x^{2}\right)=\mathfrak{P}\left(K[x] / x^{2}\right)=\langle\bar{x}\rangle$
(h) $\operatorname{Spec}(\mathbb{Z}[x])=\{\langle f, p\rangle \mid \bar{f}$ is irred in $\mathbb{Z} / p \mathbb{Z}[x], p \in \mathbb{P}\} \cup\{\langle f\rangle \mid f$ irred. $\} \cup\{\langle 0\rangle\}$

Proposition 1.17 (Prime Avoidance). Let $I \preccurlyeq R ; P_{1}, \ldots, P_{k-2} \in \operatorname{Spec}(R) ; P_{k-1}, P_{k} \sharp R$. Then we have:

$$
I \subseteq \bigcup_{i=1}^{k} P_{i} \Longrightarrow \exists i: I \subseteq P_{i}
$$

Proof. We do an induction on k.

- $k=1$:
- $k=2$: First, we'll need the following argument: W.l.o.g. we have that $I \nsubseteq$ $\bigcup_{i \neq j} P_{j}$ for all i, since otherwise the respective P_{i} can be removed, so that we can apply induction and are done. So assume

$$
\exists a_{i} \in I \backslash \bigcup_{i \neq j} P_{j} \subseteq P_{i}
$$

1. Rings and Ideals

Let $a_{1}+a_{2} \in I \subseteq P_{1} \cup P_{2}$.

$$
\begin{aligned}
& \Longrightarrow a_{1}+a_{2} \in P_{1} \text { or } a_{1}+a_{2} \in P_{2} \\
& \Longrightarrow a_{2}=\left(a_{1}+a_{2}\right)-a_{1} \in P_{1} \text { or } a_{1} \in P_{2}
\end{aligned}
$$

This is a contradiction to the choice of the $a_{i} \cdot \underline{z}$

- $k \geq 3$ Choose the a_{i} as above and let $a:=a_{1}+a_{2} \cdot \ldots \cdot a_{k} \in I \subseteq \bigcup_{i=1}^{k} P_{i} \Longrightarrow$ $\exists i: a \in P_{i}$. We consider two cases:
$-(i=1)$

$$
\begin{aligned}
& \Longrightarrow a_{1}+a_{2} \cdot \ldots \cdot a_{k} \in P_{1} \\
& \Longrightarrow a_{2} \cdot \ldots \cdot a_{k} \in P_{1} \text { since } a_{1} \in P_{1} \\
& \Longrightarrow \exists j \neq 1: a_{j} \in P_{1 ұ}
\end{aligned}
$$

$-(i>1)$. Since $a_{2} \cdot \ldots \cdot a_{k} \in P_{i} \Longrightarrow a_{1}=a-a_{2} \cdot \ldots \cdot a_{k} \in P_{i}$. So there exists an i, such that $I \subseteq \bigcup_{i \neq j} P_{j}$ and we can apply induction.

Lemma 1.18. Let $I \preccurlyeq R, I \subsetneq R$

$$
\Longrightarrow \exists \mathfrak{m} \triangleleft \cdot R: I \subseteq \mathfrak{m}
$$

Proof. Let $M=\{J \preccurlyeq R \mid J \subsetneq R, I \subseteq J\} \neq \emptyset$, since $I \in M . M$ is partially ordered with respect to inclusion.

Now let

$$
\mathcal{J} \subseteq M
$$

be any totally ordered subset of M and

$$
J:=\bigcup_{J^{\prime} \in \mathcal{J}} J^{\prime} 太 R
$$

It is clear that $I \subseteq J$. We need to show, that $J \neq R$ (then $J \in M$ and J is an upper bound for the chain):
Suppose $J=R \ni 1 \Longrightarrow \exists J^{\prime} \in \mathcal{J}: J^{\prime} \ni 1 \Longrightarrow J^{\prime}=R$ ł
$\Longrightarrow J \neq R \xrightarrow{\Longrightarrow} \xrightarrow{\text { Zorn }} \exists \tilde{J} \in M$ maximal with respect to inclusion. Our claim is now, that
$\triangleleft \cdot R$ and $I \subseteq \tilde{J}:$

- $I \subseteq \tilde{J}: \checkmark$, since $\tilde{J} \in M$
- Suppose $\exists J^{\prime} \preccurlyeq R, J_{\tilde{J}}^{\prime} \subsetneq R$ and $\tilde{J} \subsetneq J^{\prime}$. Then we have $J^{\prime} \in M$, which is a contradiction, since \tilde{J} is maximal in M. Thus \tilde{J} is a maximal ideal.

1. Rings and Ideals

Lemma 1.19.

$$
a \in J(R) \Longleftrightarrow \forall b \in R: 1-a b \in R^{*}
$$

Proof.

- " $\Longrightarrow ":$ Suppose $1-a b \notin R^{*}$ for some $b \in R$, but $a \in J(R)$

$$
\begin{aligned}
& \Longrightarrow\langle 1-a b\rangle \neq R \\
& \stackrel{\Longrightarrow 1.18}{\Longrightarrow} \exists \mathfrak{m} \triangleleft \cdot R:\langle 1-a b\rangle \subseteq \mathfrak{m} \\
& \Longrightarrow 1=\underbrace{(1-a b)}_{\in \mathfrak{m}}+\underbrace{a b}_{\in J(R) \subseteq \mathfrak{m}} \in \mathfrak{m} \sharp, \text { since } \mathfrak{m} \neq R
\end{aligned}
$$

- "厄": Suppose $\exists \mathrm{m} \triangleleft \cdot R$, such that $a \notin \mathrm{~m}$.

$$
\begin{aligned}
& \Longrightarrow \mathbf{m} \subsetneq\langle\mathbf{m}, a\rangle \\
& \stackrel{\mathbf{m}_{\triangle \cdot}}{\Longrightarrow}\langle\mathbf{m}, a\rangle=R \\
& \Longrightarrow 1=m+a b \text { with } m \in \mathfrak{m}, b \in R \\
& \Longrightarrow \underbrace{1-a b}_{\in R^{*}}=m \in \mathbf{m} \\
& \Longrightarrow \mathbf{m}=R_{\text {z }}
\end{aligned}
$$

Definition 1.20. A ring R is called local $: \Longleftrightarrow R$ has a unique maximal ideal $(\Longleftrightarrow$ $J(R) \triangleleft \cdot R)$

Example 1.21.

(a) Fields are local rings, $J(K)=\langle 0\rangle$
(b) $K \llbracket x \rrbracket$ is a local ring, since $J(K \llbracket x \rrbracket)=\langle x\rangle$
(c) $\mathbb{R}\{x\}$ and $\mathbb{C}\{x\}$ are local rings with Jacobson radical $\langle x\rangle$
(d) $K[x]$ and \mathbb{Z} are not local, since for example $\langle 2\rangle,\langle 3\rangle \triangleleft \cdot \mathbb{Z}$ and $\langle x\rangle,\langle x+1\rangle \triangleleft$ - $K[x]$.

Lemma 1.22. The following statements are equivalent (for $R \neq 0$):
(a) R is local
(b) $\exists \mathfrak{m} \triangleleft \cdot R: \forall a \in \mathfrak{m}, b \in R: 1-a b \in R^{*}$
(c) $\exists \mathfrak{m} \triangleleft \cdot R: \forall a \in \mathfrak{m}: 1+a \in R^{*}$
(d) $R \backslash R^{*} \boxtimes R$ (in that case we have $J(R)=R \backslash R^{*}$)

1. Rings and Ideals

Proof.

- " $(a) \Longrightarrow(b) ":$ See 1.19 since $J(R)=\mathrm{m}$
- " $(b) \Longrightarrow(c) ":$ clear with $b=-1$
- " $(c) \Longrightarrow(d)$ ": We have to show that $\mathbf{m}=R \backslash R^{*}$:
" \subseteq ": \checkmark, since otherwise $m=R$
" \supseteq ": Let $b \notin \mathrm{~m}$

$$
\begin{aligned}
& \Longrightarrow \mathbf{m} \subsetneq\langle\mathbf{m}, b\rangle \\
& \Longrightarrow\langle\mathbf{m}, b\rangle=R(\text { since } \mathfrak{m} \triangleleft \cdot R) \\
& \Longrightarrow 1=m+a b \\
& \Longrightarrow b a=1-m=\underbrace{1+(-m)}_{\in R^{*}} \\
& \Longrightarrow b a \in R^{*} \Longrightarrow b \in R^{*}
\end{aligned}
$$

- " $(d) \Longrightarrow(a)$ ": Let $\boldsymbol{m} \triangleleft \cdot R$
$\Longrightarrow \mathbf{m} \subseteq R \backslash R^{*} \preccurlyeq R$
$\Longrightarrow \mathfrak{m}=R \backslash R^{*}$ since \boldsymbol{m} is maximal and $R \backslash R^{*} \subsetneq R$

2. Modules and linear maps

A). Basics

Definition 2.1. Let R be a ring.
(a) An R-module or module is a tuple $(M,+, \cdot)$, where $M \neq \emptyset$ is a set, $+: M \times M \longrightarrow$ $M, \cdot: R \times M \longrightarrow M$ binary operations such that $\forall m, m^{\prime} \in M, r, s \in R:$
(1) $(M,+)$ is an abelian group
(2) (Generalized distributivity:)

$$
\begin{aligned}
r \cdot\left(m+m^{\prime}\right) & =r \cdot m+r \cdot m^{\prime} \\
(r+s) \cdot m & =r \cdot m+s \cdot m
\end{aligned}
$$

(Generalized associativity:)

$$
r \cdot(s \cdot m)=(r \cdot s) \cdot m
$$

(3) $1 \cdot m=m$
(b) Let M be an R-module and $N \subseteq M$. Then N is a submodule of M

$$
\begin{aligned}
&: \Longleftrightarrow\left(N,+_{\mid N}, \cdot{ }_{\mid N}\right) \text { is an } R \text { - module } \\
& \Longleftrightarrow(N,+) \text { is a group and } r n \in N \forall r \in R, n \in N \\
& \Longleftrightarrow \forall n, n^{\prime} \in N, r, r^{\prime} \in R: r n+r^{\prime} n^{\prime} \in N
\end{aligned}
$$

In that case we write $N \leq M$.
(c) Let M be an R-module, $N \leq M$. Define on the quotient group $(M / N,+)$ a scalar multiplication by

$$
r \bar{m}=\overline{r m}
$$

Then this is well-defined and $(M / N,+, \cdot)$ is an R-module, the quotient module of M by N.
(d) Let M be an R-module, $J \subseteq M$.

$$
\langle J\rangle:=\bigcap_{J \subseteq N \leq M} N=\left\{\sum_{i=1}^{n} r_{i} m_{i} \mid n \in \mathbb{N}, r_{i} \in R, m_{i} \in J\right\} \leq M
$$

the submodule generated by J.

2. Modules and linear maps

(e) An R-module M is fintely generated

$$
\Longleftrightarrow \exists m_{1}, \ldots, m_{n} \in M: M=\left\langle m_{1}, \ldots, m_{n}\right\rangle
$$

(f) Let M, N be an R-module. Then a map $\varphi: M \rightarrow N$ is called R-linear or an R-module homomorphism

$$
: \Longleftrightarrow \forall r, r^{\prime} \in R, m, m^{\prime} \in M: \varphi\left(r m+r^{\prime} m^{\prime}\right)=r \varphi(m)+r^{\prime} \varphi\left(m^{\prime}\right)
$$

Notation: $\operatorname{Hom}_{R}(M, N)=\{\varphi: M \rightarrow N \mid \varphi$ is linear $\}$
(g) Let $\varphi \in \operatorname{Hom}_{R}(M, N)$. Then we call φ a monomorphism, epimorphism,isomorphism $: \Longleftrightarrow \varphi$ is injective, surjective, bijective.

- $\operatorname{ker}(\varphi):=\varphi^{-1}(0) \leq M$ is the kernel of φ
- $\operatorname{Im}(\varphi):=\varphi(M) \leq N$ is the image of φ
- $\operatorname{Coker}(\varphi):=N / \operatorname{Im}(\varphi)$ is the cokernel of φ

Note. $\operatorname{Coker}(\varphi)=0 \Longleftrightarrow \varphi$ is surjective
(h) Let M, N, P be R-modules, $\varphi \in \operatorname{Hom}_{R}(M, N)$. Then:

$$
\begin{aligned}
& \varphi^{*}: \operatorname{Hom}_{R}(N, P) \rightarrow \operatorname{Hom}_{R}(M, P): \psi \mapsto \psi \circ \varphi \\
& \varphi_{*}: \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}(P, N): \psi \mapsto \varphi \circ \psi
\end{aligned}
$$

(i) An R-module M is simple if it contains only the trivial submodules $\{0\}$ and M.

Example 2.2.

(a) K-vector spaces correspond to K-modules (where K is a field)
(b) Ideals are the submodules of the R-module R
(c) $\varphi \in \operatorname{Hom}\left(R, R^{\prime}\right), M$ an R^{\prime}-module, then

$$
\underbrace{r}_{\in R} \underbrace{m}_{\in M}:=\varphi(r) m
$$

makes M an R-module.
(d) $(M,+, \cdot)$ is a \mathbb{Z}-module $\Longleftrightarrow(M,+)$ is an abelian group

Proof. (only for " \Longleftarrow ")
$z \in \mathbb{Z}, m \in M \Longrightarrow z \cdot m:=m^{z}$ in $(M,+)$
(e) $\operatorname{Hom}_{R}(M, N)$ is an R-module via

$$
\begin{aligned}
(\varphi+\psi)(m) & =\varphi(m)+\psi(m) \\
(r \varphi)(m) & =r \varphi(m)
\end{aligned}
$$

2. Modules and linear maps

(f) φ^{*}, φ_{*} are R-linear
(g) $M \cong \operatorname{Hom}_{R}(R, M)$ by $m \mapsto(R \rightarrow M, r \mapsto r m)$

Proof. Exercise
(h) Let M an R-module, $\varphi \in \operatorname{Hom}_{R}(M, M)$. Then M becomes an $R[x]$-module via

$$
x \cdot m:=\varphi(m)
$$

(Then $\left.\left(\sum a_{i} x^{i}\right) m=\sum a_{i} \varphi^{i}(m)\right)$
(i) In general we have $M \not \not \operatorname{Hom}_{R}(M, R)$, e.g. $R=\mathbb{Z}$ and $M=\mathbb{Z} / 2 \mathbb{Z}$.

Definition 2.3 (Operations on modules).
(a) Let M_{λ} be an R-module, $\lambda \in \Lambda$

$$
\prod_{\lambda \in \Lambda} M_{\lambda}:=\left\{\left(m_{\lambda}\right)_{\lambda \in \Lambda} \mid m_{\lambda} \in M_{\lambda} \forall \lambda \in \Lambda\right\}
$$

is an R-module by componentwise operations and is called the direct product of the M_{λ} 's.

$$
\bigoplus_{\lambda \in \Lambda} M_{\lambda}:=\left\{\left(m_{\lambda}\right)_{\lambda \in \Lambda} \mid \text { only finitely many } m_{\lambda} \text { are non-zero }\right\} \leq \prod_{\lambda \in \Lambda} M_{\lambda}
$$

the direct sum of the M_{λ}
(b) Let $I \preccurlyeq R, M$ an R-module, $N, N^{\prime}, M_{\lambda} \leq M, \lambda \in \Lambda$

- $\bigcap_{\lambda \in \Lambda} M_{\lambda} \leq M$
- $\sum_{\lambda \in \Lambda} M_{\lambda}:=\left\langle\bigcup_{\lambda \in \Lambda} M_{\lambda}\right\rangle=\left\{\sum_{\lambda \in \Lambda} m_{\lambda} \mid m_{\lambda} \in M_{\lambda}\right.$ finitely many non-zero $\}$
- $\operatorname{Tor}(M):=\{m \in M \mid \exists r \in R: r m=0$ and r is not a zero-divisor $\} \leq M$ is the torsion module of M

Proof. $m, m^{\prime} \in \operatorname{Tor}(M) ; r, r^{\prime} \in R$ not zero-div. and $r m=r^{\prime} m^{\prime}=0$

$$
\begin{aligned}
& \underbrace{r r^{\prime}}_{\text {not zero-div. }}\left(m+m^{\prime}\right)=0 \\
& \Longrightarrow m+m^{\prime} \in \operatorname{Tor}(M)
\end{aligned}
$$

- $I \cdot M:=\langle a m \mid a \in I, m \in M\rangle \leq M$
- $N: N^{\prime}:=\left\{r \in R \mid r N^{\prime} \subseteq N\right\} \boxtimes R$ is the module quotient of N by N^{\prime}

2. Modules and linear maps

- $\operatorname{ann}_{R}(M):=\operatorname{ann}(M):=\{r \in R \mid r m=0 \forall m \in M\} \sharp R$ is the annihilator of M.
- Let M be an R-module, $m_{\lambda} \in M, \lambda \in \Lambda$. M is called free with generators $\left(m_{\lambda}, \lambda \in \Lambda\right)$

$$
: \Longleftrightarrow \bigoplus_{\lambda \in \Lambda} R \xrightarrow{\cong} M
$$

is an isomorphism.
$\Longleftrightarrow \forall R$ - modules N and $n_{\lambda} \in N, \lambda \in \Lambda$:

$$
\exists_{1} R-\text { linear map } M \rightarrow N, m_{\lambda} \mapsto n_{\lambda}
$$

Notation: $\operatorname{rank}(M):=|\Lambda|$
Note. $\operatorname{rank}(M)$ is well-defined and $\operatorname{rank}(M)=n<\infty \Longleftrightarrow M \cong R^{n}$ (by def.)

Proof. (well-definedness:)
Let M be free with respect to $\left(m_{\lambda}\right)_{\lambda \in \Lambda}$ and with respect to $\left(m_{\lambda}\right)_{\lambda \in \Lambda^{\prime}}$
We have to show: $|\Lambda|=\left|\Lambda^{\prime}\right|$
(1) " $|\Lambda|=\infty "$:

$$
\begin{aligned}
& m_{\mu}=\sum_{\lambda \in T_{\mu}} a_{\lambda} m_{\lambda} ; T_{\mu} \subseteq \Lambda \text { finite, } \forall \mu \in \Lambda^{\prime} \\
\Longrightarrow & \Lambda=\bigcup_{\mu \in \Lambda^{\prime}} T_{\mu} \text {, since }\left(m_{\lambda}\right) \text { is a minimal set of generators } \\
\Longrightarrow & |\Lambda| \leq \sum_{\mu \in \Lambda^{\prime}}\left|T_{\mu}\right| \leq\left|\Lambda^{\prime}\right||\mathbb{N}|=\left|\Lambda^{\prime}\right|\left(\text { since }\left|\Lambda^{\prime}\right|<\infty \Longrightarrow|\Lambda|<\infty \nless\right) \\
\Longrightarrow & |\Lambda| \leq\left|\Lambda^{\prime}\right|
\end{aligned}
$$

Analogously $\left|\Lambda^{\prime}\right| \leq|\Lambda| \Longrightarrow|\Lambda|=\left|\Lambda^{\prime}\right|$
(2) " $|\Lambda|<\infty$ " postponed to 2.14.

Example 2.4.

(a) M an R-module $\Longrightarrow M$ is an $R / \operatorname{ann}(M)^{-m o d u l e ~ v i a ~}$

$$
\bar{r} m:=r m
$$

2. Modules and linear maps

(b) $R=K[x, y], M=R /\langle x\rangle \oplus R /\langle y\rangle$

$$
\Longrightarrow \operatorname{ann}_{R}(M)=\langle x y\rangle
$$

(c) $N: N^{\prime}=\operatorname{ann}_{R}\left(N+N^{\prime} / N\right)$
(d) $\mathbb{Z} / 2 \mathbb{Z}$ is not a free \mathbb{Z}-module.
(e) A minimal set of generators in a module is in general not a basis, e.g. $\mathbb{Z}=\langle 2,3\rangle$, this is a minimal generating set but no basis.

Theorem 2.5 (Isomorphism theorem). Let N, N^{\prime}, M, L modules.
(a) $\varphi \in \operatorname{Hom}_{R}(M, N)$

$$
\Longrightarrow M / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi)
$$

by: $\bar{m} \mapsto \varphi(m)$
In particular: $\operatorname{ker}(\varphi)=\{0\} \Longleftrightarrow \varphi$ is injective
(b) $N \leq M \leq L$

$$
\Longrightarrow(L / N) /(M / N) \cong L / M
$$

(c) $N, N^{\prime} \leq M$

$$
\Longrightarrow N / N \cap N^{\prime} \cong N+N^{\prime} / N^{\prime}
$$

(d) $N \leq M$

$$
\Longrightarrow\left\{N^{\prime} \leq M \mid N \subseteq N^{\prime}\right\} \longrightarrow\left\{\bar{N}^{\prime} \mid \bar{N}^{\prime} \leq M / N\right\}, N^{\prime} \mapsto N^{\prime} / N
$$

is bijective.
Proof. As for vector spaces

B). Finitely generated modules

Theorem 2.6 (Cayley-Hamilton). Let M be a finitely gen. R-module, $I \lessgtr R, \varphi \in$ $\operatorname{Hom}_{R}(M, M)$.

If $\varphi(M) \subseteq I \cdot M$, then there exists

$$
\chi_{\varphi}:=x^{n}+p_{1} x^{n-1}+\ldots+p_{n} \in R[x]
$$

such that $p_{i} \in I^{i}$ and $\chi_{\varphi}(\varphi)=0 \in \operatorname{Hom}_{R}(M, M)$

2. Modules and linear maps

Proof. Consider M as an $R[x]$-module via

$$
\begin{equation*}
x m:=\varphi(m) \tag{*}
\end{equation*}
$$

Let $M=\left\langle m_{1}, \ldots, m_{n}\right\rangle$

$$
\Longrightarrow \varphi\left(m_{i}\right)=\sum_{j=1}^{n} a_{i j} m_{j}, a_{i j} \in I, \text { since } \varphi(M) \subseteq I \cdot M
$$

$\stackrel{A:=\left(a_{i j}\right)}{\Longrightarrow} \underbrace{\left(x \cdot I_{n}-A\right)}_{\in M a t(n \times n, R[x])} \cdot\left(\begin{array}{c}m_{1} \\ \vdots \\ m_{n}\end{array}\right)=\binom{x m_{1}-\sum_{i=1}^{n} a_{1 i} m_{i}}{\vdots}=\left(\begin{array}{c}\varphi\left(m_{1}\right)-\varphi\left(m_{1}\right) \\ \vdots \\ \vdots\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$
where I_{n} is the identity matrix. Thus by Cramer's rule we have that

$$
\begin{aligned}
\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) & =\underbrace{\left(x I_{n}-A\right)^{\#}}_{\text {adjoined matrix }}\left(x I_{n}-A\right)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right) \\
& =\operatorname{det}\left(x I_{n}-A\right) \cdot I_{n} \cdot\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\operatorname{det}(\ldots) m_{1} \\
\vdots \\
\operatorname{det}(\ldots) m_{n}
\end{array}\right) \\
\Longrightarrow \Longrightarrow & \underbrace{\operatorname{det}\left(x I_{n}-A\right) m=0 \forall m \in M}_{=: \chi_{\varphi}} \text { det } x I_{n}-A) \in \operatorname{ann}_{R[x]}(M)
\end{aligned}
$$

Then by the Leibniz formula we have that

$$
R[x] \ni \chi_{\varphi}=x^{n}+p_{1} x^{n-1}+\ldots+p_{n}, p_{i} \in I^{i}
$$

and thus $\chi_{\varphi}(\varphi)(m) \stackrel{(*)}{=} \chi_{\varphi} \cdot m=0$
$\Longrightarrow \chi_{\varphi}(\varphi)=0 \in \operatorname{Hom}_{R}(M, M)$
Remark 2.7. Let M be finitely generated and $\varphi: M \rightarrow M$-linear. If φ is injective $\nRightarrow \varphi$ is bijective, e.g.

$$
\varphi: \mathbb{Z} \rightarrow \mathbb{Z}, z \mapsto 2 z
$$

is injective, but not surjective.

Corollary 2.8. Let M be a fin. gen. R-module, $\varphi \in \operatorname{Hom}_{R}(M, M)$. Then:

$$
\varphi \text { is surjective } \Longleftrightarrow \varphi \text { is bijective }
$$

Proof. We only need to show " \Longrightarrow ":
Consider M as an $R[t]$-module via $t m:=\varphi(m)$ and let $I=\langle t\rangle \preccurlyeq R[t]$ and $\operatorname{id}_{M} \in$ $\operatorname{Hom}_{R[t]}(M, M)$
Since φ is surjective $\Longrightarrow I \cdot M=t \cdot M=\varphi(M)=M=\operatorname{id}_{M}(M)$. Then by 2.6 there exists

$$
\chi_{\mathrm{id}_{M}}=x^{n}+\sum_{i=0}^{n-1} p_{n-i} x^{i} \in R[t][x]
$$

with $p_{j} \in\left\langle t^{j}\right\rangle$ and

$$
0=\chi_{\operatorname{id}_{M}}\left(\operatorname{id}_{M}\right)=\operatorname{id}_{M}+\sum_{i=0}^{n-1} p_{n-i} \operatorname{id}_{M}
$$

Now set $q:=\frac{p_{1}+\ldots p_{n}}{t} \in R[t]$ (by def. of the p_{j}). Then we have:

$$
\begin{aligned}
\operatorname{id}_{M}(m) & =\left(-\sum_{i=0}^{n-1} p_{n-i} \operatorname{id}_{M}\right)(m) \\
& =\left(-\sum_{i=0}^{n-1} p_{n-i}\right) m \\
& =t \cdot(-q) \cdot m=(\varphi \circ(-q(\varphi)))(m) \\
& =(-q) \cdot t \cdot m=((-q(\varphi)) \circ \varphi)(m)
\end{aligned}
$$

Thus $i d_{M}=\varphi \circ(-q(\varphi))=(-q(\varphi)) \circ \varphi$
Corollary 2.9 (Lemma of Nakayama, NAK). Let M be a fin. gen. R-module and $I \preccurlyeq R$, such that $I \subseteq J(R)$. Then:

$$
I \cdot M=M \Longrightarrow M=0
$$

Proof. Apply 2.6 to $\varphi=\mathrm{id}_{M}$

$$
\begin{aligned}
& \Longrightarrow \exists p_{1}, \ldots, p_{n} \in I:\left(1+p_{1}+\ldots+p_{n}\right) \operatorname{id}_{M}=0 \\
& \Longrightarrow \forall m \in M:\left(1+p_{1}+\ldots+p_{n}\right) m=0 \\
& \Longrightarrow \\
& \quad \underbrace{1+\underbrace{p_{1}+\ldots+p_{n}}_{\in I \subseteq J(R)} \in \operatorname{ann}_{R}(M)}_{\in R^{*} \text { by } 1.19} \\
& \Longrightarrow \\
& \Longrightarrow \operatorname{ann}_{R}(M)=R \\
& \Longrightarrow M=0, \text { since } 1 \cdot m=0
\end{aligned}
$$

2. Modules and linear maps

Corollary 2.10 (NAK 1). If (R, \mathfrak{m}) is local, M a fin. gen. R-module, $\mathfrak{m} M=M$, then

$$
M=0
$$

Proof. $J(R)=\mathbf{m}$
Corollary 2.11 (NAK 2). If ($R, \mathrm{~m}$) is local, M a fin. gen. R-module, $N \leq M$ and $N+\boldsymbol{m} M=M$, then

$$
N=M
$$

Proof.

$$
\begin{aligned}
& \mathfrak{m}(M / N)=(\mathfrak{m} M+N) / N=M / N \\
\Longrightarrow & M / N=0(\text { by NAK } 1) \\
\Longrightarrow & M=N
\end{aligned}
$$

Corollary 2.12 (NAK 3). Let $(R, \mathrm{~m})$ be local, $0 \neq M$ a fin. gen. R-module. Then:

$$
\begin{aligned}
& \left(m_{1}, \ldots, m_{n}\right) \text { is a minimal set of generators for } M \\
\Longleftrightarrow & \left(\overline{m_{1}}, \ldots, \overline{m_{n}}\right) \text { is a minimal set of generators for } M / \mathrm{m} M
\end{aligned}
$$

Note. $\mathrm{m} \triangleleft \cdot R \Longrightarrow R / \mathrm{m}$ is a field $\Longrightarrow M / \mathrm{m} M$ is a fin. gen. R / m-module $\Longrightarrow M / \mathrm{m} M$ is a finite dimensional vector space over R / m.

Proof. We show two directions:

- " ": Set $N:=\left\langle m_{1}, \ldots, m_{n}\right\rangle \leq M$

$$
\begin{aligned}
& \Longrightarrow(N+\mathrm{m} M) / \mathrm{m} M=\left\langle\overline{m_{1}}, \ldots, \overline{m_{n}}\right\rangle=M / \mathrm{m} M \\
& \Longrightarrow N+\mathrm{m} M=M \stackrel{N A K 2}{\Longrightarrow} N=M \\
& \Longrightarrow m_{1}, \ldots, m_{n} \text { is a generating system of } M
\end{aligned}
$$

Suppose that m_{j} is superfluos. Then

$$
\left\langle\overline{m_{1}}, \ldots, \overline{m_{j-1}}, \overline{m_{j+1}}, \ldots, \overline{m_{n}}\right\rangle=M / \mathrm{m} M \text { z }
$$

- " \Longrightarrow ": Clear $\left\langle\overline{m_{1}}, \cdots, \overline{m_{n}}\right\rangle=M / \mathrm{m} M$. Suppose $\overline{m_{j}}$ is superfluos. Then by " \Longleftarrow "

$$
\left\langle m_{1}, \cdots, m_{j-1}, m_{j+1}, \cdots, m_{n}\right\rangle=M_{z}
$$

2. Modules and linear maps

Corollary 2.13 (NAK 4). Let (R, \mathbf{m}) be a local ring; N, M fin. gen. R-modules, $\varphi \in \operatorname{Hom}_{R}(M, N)$. Then:

$$
\varphi \text { is surjective } \Longleftrightarrow \bar{\varphi}: M / \mathrm{m} M \rightarrow N^{N} / \mathrm{m} N \text { is surjective }
$$

Proof. We only need to show " ":
Let $\bar{\varphi}$ be surjective
$\Longrightarrow 0=\operatorname{Coker}(\bar{\varphi})=(N / \mathrm{m} N) / \operatorname{Im}(\bar{\varphi})=(N / \mathrm{m} N) /(\operatorname{Im}(\varphi)+\mathrm{m} N / \mathrm{m} N) \cong N /(\operatorname{Im}(\varphi)+\mathfrak{m} N)$
$\Longrightarrow N=\operatorname{Im}(\varphi)+\mathrm{m} N$ and by NAK 2: $N=\operatorname{Im}(\varphi)$ and thus φ is surjective.

Remark 2.14.

$$
R^{m} \stackrel{\psi}{\cong} R^{n} \Longrightarrow m=n
$$

In particular the rank of a free and finitely generated module is well-defined
Proof. Suppose $n>m$. Consider

$$
\varphi: R^{n} \rightarrow R^{m}, e_{i} \mapsto\left\{\begin{array}{l}
e_{i}, i \leq m \\
0, \text { else }
\end{array}\right.
$$

$\Longrightarrow \varphi$ is a surjective, R-linear map.
Then $\psi \circ \varphi: R^{n} \rightarrow R^{n}$ is surjective and and by 2.8 bijective. But $(\psi \circ \varphi)\left(e_{n}\right)=\psi(0)=$ 02.

Proposition 2.15. M is finitely generated $\Longleftrightarrow \exists \varphi: R^{n} \rightarrow M R$-linear
Proof. We show two directions:

- " $\Longrightarrow ": M=\left\langle m_{1}, \ldots, m_{n}\right\rangle \Longrightarrow \varphi: R^{n} \rightarrow M, e_{i} \mapsto m_{i}$
- " "": $\varphi: R^{n} \rightarrow M \Longrightarrow M=\left\langle\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{n}\right)\right\rangle$

Remark 2.16 (Fundamental thm. of fin. gen. modules over P.I.D.'s). Let R be a P.I.D., M a fin. gen. R-module. Then:
(a) $M \cong \operatorname{Tor}(M) \oplus R^{n}$ for a unique $n \in \mathbb{N}_{0}$.
(b) $\operatorname{Tor}(M) \cong \bigoplus_{i=1}^{r} R /\left\langle p_{i}^{\alpha_{i}}\right\rangle$, where p_{i} is prime, $\alpha_{i} \geq 1$ uniquely determined.

Proof. too hard.

Example. $R=\mathbb{Z}$
$\Longrightarrow M$ is an abelian group, fin. gen.
$\Longrightarrow M=\mathbb{Z}^{n} \oplus \mathbb{Z} /\left\langle p_{i}^{\alpha_{i}}\right\rangle \oplus \ldots \oplus \mathbb{Z} /\left\langle p_{r}^{\alpha_{r}}\right\rangle, p_{i}$ prime.

C). Exact Sequences

Definition 2.17.

(a) A sequence $M \stackrel{\varphi}{\longrightarrow} N \xrightarrow{\psi} P$ of R-linear maps is called exact at N

$$
: \Longleftrightarrow \operatorname{Im}(\varphi)=\operatorname{ker}(\psi)
$$

(b) A sequence $M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} M_{3} \xrightarrow{\varphi_{3}} \ldots \xrightarrow{\varphi_{n-1}} M_{n}$ of R-linear maps is called exact $: \Longleftrightarrow$ Is is exact at $M_{i} \forall i \in\{2, \ldots, n-1\}$
(c) An exact sequence of R-linear maps of the form $0 \longrightarrow M \longrightarrow N \longrightarrow P$ is called a short exact sequence.
(d) A short exact sequence $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{p} M^{\prime \prime} \longrightarrow 0$ is called split exact $: \Longleftrightarrow \exists \psi \in \operatorname{Hom}_{R}\left(M^{\prime \prime}, M\right)$, such that $p \circ \psi=\operatorname{id}_{M^{\prime \prime}}$.

Example 2.18.

(a) $M \stackrel{\varphi}{\longrightarrow} N \longrightarrow 0$ is exact at $N \Longleftrightarrow \varphi$ is surjective
(b) $0 \longrightarrow M \xrightarrow{\varphi} N$ is exact at $M \Longleftrightarrow \varphi$ is injective.
(c) $0 \xrightarrow{0} M \xrightarrow{\varphi} N \xrightarrow{\psi} P \longrightarrow 0$ is exact $\Longleftrightarrow \varphi$ is injective, ψ is surjective
and $\operatorname{Im}(\varphi)=\operatorname{ker}(\psi)$
(d) $0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0$ is exact.
(e) $\varphi \in \operatorname{Hom}_{R}(M, N) \Longrightarrow$:
$0 \longrightarrow \operatorname{ker}(\varphi) \longrightarrow M \xrightarrow{\varphi} N \longrightarrow \operatorname{Coker}(\varphi) \longrightarrow 0$ is exact.
$0 \longrightarrow \operatorname{ker}(\varphi) \longrightarrow M \xrightarrow{\varphi} \operatorname{Im}(\varphi) \longrightarrow 0$ is short exact.
(f) $N \leq M \Longrightarrow$

$$
0 \longrightarrow N \longrightarrow M \longrightarrow M / N \longrightarrow 0 \text { is exact. }
$$

2. Modules and linear maps

(g) Every "long" exact sequence splits into short ones and is composed by short ones. Thus, studying exact sequences is reduced to studying short exact sequences! How to do this (the 'triangular' sequence is the resulting short sequence, all these short sequences are 'stitched together' at the 0's):

Conversely, if we have given:

$$
\begin{gathered}
0 \longrightarrow K_{n-1} \xrightarrow{i_{n-1}} M_{n-1} \xrightarrow{\pi_{n-1}} M_{n} \\
0 \longrightarrow K_{n-2} \xrightarrow{i_{n-2}} M_{n-2} \xrightarrow{\pi_{n-2}} K_{n-1} \longrightarrow 0 \\
\vdots \\
0 \longrightarrow K_{1} \xrightarrow{i_{1}} M_{1} \xrightarrow{\pi_{1}} K_{2} \longrightarrow 0 \\
M_{0} \xrightarrow{\pi_{0}} K_{1} \longrightarrow 0
\end{gathered}
$$

we construct an exact sequence

$$
M_{0} \xrightarrow{i_{1} \circ \pi_{0}} M_{1} \xrightarrow{i_{2} \circ \pi_{1}} \ldots \longrightarrow M_{n-1} \xrightarrow{\pi_{n-1}} M_{n}
$$

Definition 2.19. Let \mathfrak{R} be a class of R-modules, which is closed under submodules, quotient modules and isomorphisms. A function $\lambda: \mathfrak{R} \rightarrow \mathbb{N}$ is called additive on \mathfrak{R} $: \Longleftrightarrow$ for all $M, M^{\prime}, M^{\prime \prime} \in \mathfrak{M}$:

For all exact sequences $0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0$ we have that

$$
\lambda(M)=\lambda\left(M^{\prime}\right)+\lambda\left(M^{\prime \prime}\right)
$$

or equivalently: $\forall M \in \mathfrak{M}$ and $N \leq M$ we have:

$$
\lambda(M)=\lambda(N)+\lambda\left({ }^{M} / N\right)
$$

Example 2.20. $R=K$ a field, $\mathfrak{M}:=\left\{V \mid V\right.$ is a K-vector space with $\left.\operatorname{dim}_{K}(V)<\infty\right\}$. Then:

$$
\lambda=\operatorname{dim}_{K}
$$

is additive.
Proposition 2.21. If λ is additive on \mathfrak{R} and

$$
0 \longrightarrow M_{0} \xrightarrow{\varphi_{0}} M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} \ldots \xrightarrow{\varphi_{n-1}} M_{n} \xrightarrow{\varphi_{n}} 0
$$

is exact with $M_{i} \in \mathfrak{R}$, then:

$$
\sum_{i=0}^{n}(-1)^{i} \lambda\left(M_{i}\right)=0
$$

Proof. Since

$$
0 \longrightarrow \operatorname{ker}\left(\varphi_{i}\right) \longrightarrow M_{i} \longrightarrow \operatorname{Im}\left(\varphi_{i}\right) \longrightarrow 0
$$

is exact, we have that

$$
\lambda\left(M_{i}\right)=\lambda\left(\operatorname{Im}\left(\varphi_{i}\right)\right)+\lambda\left(\operatorname{ker}\left(\varphi_{i}\right)\right)
$$

Thus

$$
\begin{aligned}
\sum_{i=0}^{n}(-1)^{i} \lambda\left(M_{i}\right) & =\sum_{i=0}^{n}(-1)^{i}(\underbrace{\lambda\left(\operatorname{ker}\left(\varphi_{i}\right)\right)}_{=\lambda\left(\operatorname{Im}\left(\varphi_{i-1}\right)\right)}+\lambda\left(\operatorname{Im}\left(\varphi_{i}\right)\right)) \\
& =\lambda(\underbrace{\operatorname{ker}\left(\varphi_{0}\right)}_{=0})+(-1)^{n} \lambda(\underbrace{\operatorname{Im}\left(\varphi_{n}\right)}_{=0}) \\
& =\lambda(0)+(-1)^{n} \lambda(0)=0
\end{aligned}
$$

Note. Since $0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$ is exact, we know that $\lambda(0)=\lambda(0)+$ $\lambda(0)=2 \lambda(0)$ and thus $\lambda(0)=0$.

Proposition 2.22 (Snake lemma). Let the following commutative diagram of R-linear maps be given:

2. Modules and linear maps

Then consider the following diagram:
(\diamond)
(*)

If the two (*)-rows are exact, then the (\diamond) - sequence is exact for a suitable "connecting homomorphism" δ.

Proof. At first, we have to define δ (To make the following more clear, it might prove helpful to retrace the following, formal steps by hand in the diagram - a so-called 'diagram chase'):
Let $m^{\prime \prime} \in \operatorname{ker}\left(\varphi^{\prime \prime}\right) \subseteq M^{\prime \prime}$

$$
\begin{aligned}
& \Longrightarrow \exists m \in M: \beta(m)=m^{\prime \prime} \text {, since } \beta \text { is surj. } \\
& \Longrightarrow \beta^{\prime}(\varphi(m))=\varphi^{\prime \prime}(\beta(m))=\varphi^{\prime \prime}\left(m^{\prime \prime}\right)=0 \\
& \Longrightarrow \varphi(m) \in \operatorname{ker}\left(\beta^{\prime}\right)=\operatorname{Im}\left(\alpha^{\prime}\right) \\
& \Longrightarrow \exists_{1} n^{\prime} \in N^{\prime}: \alpha^{\prime}\left(n^{\prime}\right)=\varphi(m)
\end{aligned}
$$

Now define: $\delta\left(m^{\prime \prime}\right):=\overline{n^{\prime}}=n^{\prime}+\operatorname{Im}\left(\varphi^{\prime}\right)$
We have to show that $\delta\left(m^{\prime \prime}\right)$ is independent of the choice of m :
Let $m, \tilde{m} \in M$, such that $\beta(m)=\beta(\tilde{m})=m^{\prime \prime}$.

$$
\begin{aligned}
\Longrightarrow & \beta(m-\tilde{m})=m^{\prime \prime}-m^{\prime \prime}=0 \\
\Longrightarrow & m-\tilde{m} \in \operatorname{ker}(\beta)=\operatorname{Im}(\alpha) \\
\Longrightarrow & \exists m^{\prime} \in M^{\prime}: \alpha\left(m^{\prime}\right)=m-\tilde{m} \\
\Longrightarrow & \varphi(m-\tilde{m})=\varphi\left(\alpha\left(m^{\prime}\right)\right)=\alpha^{\prime}\left(\varphi^{\prime}\left(m^{\prime}\right)\right) \text { and } \\
& \varphi(m-\tilde{m})=\varphi(m)-\varphi(\tilde{m})=: \alpha^{\prime}\left(n^{\prime}\right)-\alpha^{\prime}\left(\tilde{n}^{\prime}\right)
\end{aligned}
$$

2. Modules and linear maps

if we set $n^{\prime}:=\left(\alpha^{\prime}\right)^{-1}(\varphi(m)), \tilde{n}^{\prime}:=\left(\alpha^{\prime}\right)^{-1}(\varphi(\tilde{m}))$. Thus we get:

$$
\begin{aligned}
& \Longrightarrow \alpha^{\prime}\left(n^{\prime}-\tilde{n}^{\prime}\right)=\alpha^{\prime}\left(\varphi^{\prime}\left(m^{\prime}\right)\right) \\
& \Longrightarrow n^{\prime}-\tilde{n}^{\prime}=\varphi^{\prime}\left(m^{\prime}\right) \in \operatorname{Im}\left(\varphi^{\prime}\right), \text { since } \alpha^{\prime} \text { is inj. }
\end{aligned}
$$

$$
\Longrightarrow \overline{n^{\prime}}=\overline{\tilde{n}^{\prime}} \in \operatorname{Coker}\left(\varphi^{\prime}\right)
$$

Thus δ is well-defined.
Next we show that δ is R-linear:
Let $m^{\prime \prime}, \tilde{m}^{\prime \prime} \in \operatorname{ker}\left(\varphi^{\prime \prime}\right) ; r, \tilde{r} \in R$ and let $m, \tilde{m} \in M$ and $n^{\prime}, \tilde{n}^{\prime} \in N^{\prime}$ as in the definition of δ.

$$
\begin{aligned}
& \Longrightarrow \beta(r m+\tilde{r} \tilde{m})=r m^{\prime \prime}+\tilde{r} \tilde{m}^{\prime \prime}, \text { since } \beta \text { is linear } \\
& \Longrightarrow \alpha^{\prime}\left(r n^{\prime}+\tilde{r} \tilde{n}^{\prime}\right)=\varphi(r m+\tilde{r} \tilde{m}) \text {, since } \alpha^{\prime}, \varphi \text { are linear } \\
& \Longrightarrow \delta\left(r m^{\prime \prime}+\tilde{r} \tilde{m}^{\prime \prime}\right)=r \overline{n^{\prime}}+\tilde{r} \tilde{n}^{\prime}=r \delta\left(m^{\prime \prime}\right)+\tilde{r} \delta\left(\tilde{m}^{\prime \prime}\right)
\end{aligned}
$$

It remains to show, that the sequence is exact - we only prove this for the interesting part $\operatorname{ker}(\delta)=\operatorname{Im}\left(\beta_{\mid}\right)$:

- " \supseteq ": Let m " $\in \operatorname{Im}\left(\beta_{\mid}\right)$
$\Longrightarrow \exists m \in \operatorname{ker} \varphi: \beta(m)=m^{\prime \prime}$ and thus

$$
\overline{\left(\alpha^{\prime}\right)^{-1}(\varphi(m))}=\delta\left(m^{\prime \prime}\right)=0
$$

- " \subseteq ": Let $m^{\prime \prime} \in \operatorname{ker}(\delta)$ and let $m \in M, n^{\prime} \in N^{\prime}$ as in the definition of δ.

$$
\begin{aligned}
& \Longrightarrow \bar{n}^{\prime}=0 \\
& \Longrightarrow n^{\prime} \in \operatorname{Im}\left(\varphi^{\prime}\right) \\
& \Longrightarrow \exists m^{\prime} \in M^{\prime}: \varphi^{\prime}\left(m^{\prime}\right)=n^{\prime} \\
& \Longrightarrow m-\alpha\left(m^{\prime}\right) \in \operatorname{ker}(\varphi) \\
& \text { since } \varphi(m)=\alpha^{\prime}\left(n^{\prime}\right)=\alpha^{\prime}\left(\varphi^{\prime}\left(m^{\prime}\right)\right)=\varphi\left(\alpha\left(m^{\prime}\right)\right) \\
& \Longrightarrow \beta_{\mid}\left(m-\alpha\left(m^{\prime}\right)\right)=\underbrace{\beta(m)}_{=m^{\prime \prime}}-\underbrace{(\beta \circ \alpha)\left(m^{\prime}\right)}_{=0 \text { by exactn. }}=m^{\prime \prime} \\
& \Longrightarrow m^{\prime \prime} \in \operatorname{Im}\left(\beta_{\mid}\right)
\end{aligned}
$$

Corollary 2.23 (Special 5-lemma). Suppose that in 2.22 two of the maps $\varphi, \varphi^{\prime}, \varphi^{\prime \prime}$ are isomorphisms. Then so is the third one.

2. Modules and linear maps

Proof. Assume $\varphi^{\prime}, \varphi^{\prime \prime}$ are isom. We know the following sequence is exact:

$$
\operatorname{ker}\left(\varphi^{\prime}\right) \longrightarrow \operatorname{ker}(\varphi) \longrightarrow \operatorname{ker}\left(\varphi^{\prime \prime}\right) \xrightarrow{\delta} \operatorname{Coker}\left(\varphi^{\prime}\right) \longrightarrow \operatorname{Coker}(\varphi) \longrightarrow \operatorname{Coker}\left(\varphi^{\prime \prime}\right)
$$

$$
\Longrightarrow 0 \longrightarrow \operatorname{ker}(\varphi) \longrightarrow 0 \text { is exact }
$$

$$
\Longrightarrow \operatorname{ker}(\varphi)=0
$$

$$
\text { and } 0 \longrightarrow \operatorname{Coker}(\varphi) \longrightarrow 0 \text { is exact }
$$

$$
\Longrightarrow \operatorname{Coker}(\varphi)=0
$$

Thus φ is an isomorphism. The remaining cases work analogously.
Corollary 2.24 (9-lemma). Consider

with exact columns.
If the middle row and one of $\left({ }^{*}\right),\left({ }^{* *}\right)$ is exact, then so is the other row.
Proof. If $\left({ }^{*}\right)$ is exact, then by 2.22 and exactness of columns:

$$
0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow P^{\prime} \longrightarrow P \longrightarrow P^{\prime \prime} \longrightarrow 0
$$

is exact. Analogously, if $\left({ }^{* *}\right)$ is exact, then

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0
$$

is exact.
Corollary 2.25. For a short exact sequence $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\varphi} M^{\prime \prime} \longrightarrow 0$ the following are equivalent:

2. Modules and linear maps

(a) The sequence is split exact, i.e. $\exists \psi \in \operatorname{Hom}\left(M^{\prime \prime}, M\right): \varphi \circ \psi=\mathrm{id}_{M^{\prime \prime}}$
(b) $\exists j \in \operatorname{Hom}\left(M, M^{\prime}\right): j \circ i=\operatorname{id}_{M^{\prime}}$

In both cases we have: $M \cong M^{\prime} \oplus M^{\prime \prime}$

Proof.

- "(a) $\Longrightarrow(b) ":$

This commutes. Thus, by $2.23 i \oplus \psi$ is an isomorphism and we set

$$
j:=\pi_{M^{\prime}} \circ(i \oplus \psi)^{-1}
$$

- "(b) $\Longrightarrow(a) ":$

Analogously $j \oplus \varphi$ is an isomorphism and we set:

$$
\psi:=(j \oplus \varphi)_{\mid M^{\prime \prime}}^{-1}
$$

Proposition 2.26.

(a) Let

be a commutative diagram of R-linear maps, such that the first row is exact and $\beta^{\prime} \circ \alpha^{\prime}=0$.

Then there exists $\varphi^{\prime \prime}: M^{\prime \prime} \rightarrow N^{\prime \prime} R$-linear, such that $\beta^{\prime} \circ \varphi=\varphi^{\prime \prime} \circ \beta$ (i.e.: the diagram commutes).

2. Modules and linear maps

(b) Let

be a commutative diagram, such that the second row is exact and $\beta \circ \alpha=0$.
Then there exists a $\varphi^{\prime}: M^{\prime} \rightarrow N^{\prime} R$-linear, such that $\alpha^{\prime} \circ \varphi^{\prime}=\varphi \circ \alpha(i . e .:$ the diagram commutes).

Proof.
(a) Let $m^{\prime \prime} \in M^{\prime \prime}$. Then by exactness $\exists m \in M: \beta(m)=m^{\prime \prime}$.

Define $\varphi^{\prime \prime}\left(m^{\prime \prime}\right):=\beta^{\prime}(\varphi(m))$
Show: $\varphi^{\prime \prime}$ is well-defined
Let $m, \tilde{m} \in M$, such that $\beta(m)=\beta(\tilde{m})=m^{\prime \prime}$

$$
\begin{aligned}
& \Longrightarrow m-\tilde{m} \in \operatorname{ker}(\beta)=\operatorname{Im}(\alpha) \\
& \Longrightarrow \exists m^{\prime} \in M^{\prime}: \alpha\left(m^{\prime}\right)=m-\tilde{m} \\
& \Longrightarrow \varphi\left(\alpha\left(m^{\prime}\right)\right)=\varphi(m-\tilde{m})=\varphi(m)-\varphi(\tilde{m}) \\
& =\alpha^{\prime}\left(\varphi^{\prime}\left(m^{\prime}\right)\right) \in \operatorname{Im}\left(\alpha^{\prime}\right)=\operatorname{ker}\left(\beta^{\prime}\right) \\
& \Longrightarrow \beta^{\prime}(\varphi(m))=\beta^{\prime}(\varphi(\tilde{m}))
\end{aligned}
$$

Note. $\varphi^{\prime \prime}$ is obviously R-linear.
(b) Exercise.

D). Tensor Products

Definition 2.27. Let M_{1}, \ldots, M_{n}, T be R-modules. A multilinear map

$$
\varphi: M_{1} \times \ldots \times M_{n} \rightarrow T
$$

is called a tensor product of M_{1}, \ldots, M_{n}
$: \Longleftrightarrow \forall$ multilinear $\psi: M_{1} \times \ldots \times M_{n} \rightarrow M$ (where M is an R-module) $\exists_{1} \alpha \in$ $\operatorname{Hom}_{R}(T, M)$,such that $\alpha \circ \varphi=\psi$, i.e. the following diagram commutes:

$\Longleftrightarrow \forall R$-modules M the map

$$
\operatorname{Hom}_{R}(T, M) \xrightarrow{1: 1} \operatorname{Mult}\left(M_{1} \times \ldots \times M_{n}, M\right) ; \alpha \mapsto \alpha \circ \varphi
$$

is bijective.
Proposition 2.28 (Existence). If M_{1}, \ldots, M_{n} are R-modules, then there exists a tensor product.

Proof. Let $P:=M_{1} \times . . \times M_{n}$ and let $F:=\bigoplus_{\lambda \in P} R$ be the free module of rank $\# P$. By abuse of notation we denote the free generators corresponding to the λ-component by $\lambda=\left(m_{1}, \ldots, m_{n}\right)$.

$$
\begin{aligned}
\Longrightarrow F & =\left\{\sum_{\lambda \in P} a_{\lambda} \lambda \mid \text { only finitely many } a_{\lambda} \text { are non-zero }\right\} \\
& =\left\{\sum_{\left(m_{1}, \ldots, m_{n}\right) \in P} a_{\left(m_{1}, \ldots, m_{n}\right)}\left(m_{1}, \ldots, m_{n}\right) \mid \ldots\right\}
\end{aligned}
$$

Careful! These are formal sums, so we can't pull $a_{\left(m_{1}, \ldots, m_{n}\right)}$ into the vector $\left(m_{1}, \ldots, m_{n}\right)$! Now consider the submodule

$$
N:=\left\langle\begin{array}{c}
\left(m_{1}, \ldots, m_{i}+m_{i}^{\prime}, \ldots, m_{n}\right)-\left(m_{1}, \ldots, m_{n}\right)-\left(m_{1}, \ldots, m_{i}^{\prime}, \ldots, m_{n}\right), \\
\left(m_{1}, \ldots, a m_{i}, \ldots, m_{n}\right)-a\left(m_{1}, \ldots, m_{n}\right) \forall m_{1}, \ldots, m_{n}, m_{i}^{\prime} ; i \in\{1 . . n\} ; a \in R
\end{array}\right\rangle
$$

The quotient module is called $T:=F / N$
Let $\varphi: P \rightarrow T:\left(m_{1}, \ldots, m_{n}\right) \mapsto \overline{\left(m_{1}, \ldots, m_{n}\right)}$. Then φ is multilinear by definition of T.
Let $\psi: P \rightarrow M$ be multilinear. Then define:

$$
\alpha^{\prime}: F \rightarrow M: \sum_{\lambda \in P} a_{\lambda} \lambda \mapsto \sum_{\lambda \in P} a_{\lambda} \psi(\lambda)
$$

Then $\alpha^{\prime}(N)=0$, since ψ is multilinear.

$$
\Longrightarrow \alpha: T \rightarrow M, \bar{t} \mapsto \alpha^{\prime}(t)
$$

is well-defined and R-linear and

$$
(\alpha \circ \varphi)\left(m_{1}, \ldots, m_{n}\right)=\alpha\left(\overline{\left(m_{1}, \ldots, m_{n}\right)}\right)=\psi\left(m_{1}, \ldots, m_{n}\right)
$$

and α is obviously unique, since any other α^{\prime} making the diagram commute would by definition map the generators $\overline{\left(m_{1}, \ldots, m_{n}\right)}$ of T to the same image, i.e. $\psi\left(m_{1}, \ldots, m_{n}\right)$.

Proposition 2.29 (Uniqueness). If $\varphi: M_{1} \times \ldots \times M_{n} \rightarrow T$ and $\varphi^{\prime}: M_{1} \times \ldots \times M_{n} \rightarrow T^{\prime}$ are two tensor products of M_{1}, \ldots, M_{n}, then there exists a unique isomorphism $\alpha: T \xrightarrow{\cong}$ T^{\prime}, such that

commutes.

Proof. Consider the following diagram:

where the four unique homomorphisms are deduced by choosing either T or T^{\prime} as tensor product and replacing the M in the definition of the tensor product each time by T and T^{\prime}. Thus we get $\alpha \circ \beta=\operatorname{id}_{T^{\prime}}, \beta \circ \alpha=\mathrm{id}_{T}$ and thus α is an isomorphism.

Remark 2.30. We choose the following notation:
The tensor product of M_{1}, \ldots, M_{n} we denote by $M_{1} \otimes_{R} \cdots \otimes_{R} M_{n}$.
The image of $\left(m_{1}, \ldots, m_{n}\right)$ we denote by $m_{1} \otimes \cdots \otimes m_{n}$ and call it a pure tensor.

Note.

- Every element in $M_{1} \otimes_{R} \cdots \otimes_{R} M_{n}$ is a finite linear combination of pure tensors
- A linear map on $M_{1} \otimes_{R} \cdots \otimes_{R} M_{n}$ can be definded simply by specifying the images of the pure tensors, as long as this behaves multilinearly
- If $M=\left\langle m_{1}, \ldots, m_{k}\right\rangle, N=\left\langle n_{1}, \ldots, n_{l}\right\rangle$

$$
\Longrightarrow M \otimes_{R} N=\left\langle m_{i} \otimes n_{j} \mid i=1 . . k, j=1 . . l\right\rangle_{R}
$$

- We have

$$
(r \cdot m) \otimes n=r \cdot(m \otimes n)=m \otimes(r \cdot n)
$$

and

$$
\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n .
$$

Example 2.31.

2. Modules and linear maps
(a) $M=R^{n}, N=R^{m}$ two finitely generated free modules

$$
M \otimes_{R} N \cong M a t(n \times m, R) \text { by } \underline{x} \otimes \underline{y} \mapsto \underline{x} \cdot \underline{y}^{t}
$$

Thus $\left\{e_{i} \otimes e_{j} \mid i=1 . . n, j=1 . . m\right\}$ is a basis for $M \otimes_{R} N$.
(b) $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}=0$, since:

$$
\begin{aligned}
\bar{a} \otimes \bar{b} & =(3 \bar{a}) \otimes \bar{b}=\bar{a} \otimes(3 \bar{b}) \\
& =\bar{a} \otimes \overline{0}=\bar{a} \otimes 0 \cdot \overline{0} \\
& =0 \cdot \bar{a} \otimes \overline{0}=\overline{0} \otimes \overline{0}
\end{aligned}
$$

(c) Let $R=\mathbb{Z}, M=\mathbb{Z}, M^{\prime}=2 \mathbb{Z}$ and $N=\mathbb{Z} / 2 \mathbb{Z}$. Then $2 \otimes \overline{1} \in M \otimes_{R} N$ and $2 \otimes \overline{1} \in M^{\prime} \otimes_{R} N$, but:
In $M \otimes_{R} N: 2 \otimes \overline{1}=2 \cdot 1 \otimes \overline{1}=1 \otimes 2 \cdot \overline{1}=1 \otimes \overline{0}=0 \otimes \overline{0}$
In $M^{\prime} \otimes_{R} N: 2 \otimes \overline{1} \neq 0 \otimes \overline{0}$
(d) Let M be an R-module, $I \preccurlyeq R$

$$
M \otimes_{R} R / I \cong M / I \cdot M \text { by } m \otimes \bar{r} \mapsto \overline{r m}
$$

Proof.

- The map $M \times R / I \rightarrow M / I \cdot M,(m, \bar{r}) \mapsto \overline{r m}$ is bilinear, so there exists a unique

$$
\varphi: M \otimes_{R} R / I \rightarrow M / I \cdot M, m \otimes \bar{r} \mapsto \overline{r m}
$$

- φ is clearly surjective, since $\bar{m}=\varphi(m \otimes \overline{1})$.
- Show: φ is injective:

$$
\begin{aligned}
\operatorname{ker}(\varphi) \ni \sum_{i=1}^{n} a_{i}\left(m_{i} \otimes \overline{r_{i}}\right) & =\sum_{i}\left(\left(a_{i} m_{i}\right) \otimes \overline{r_{i}}\right) \\
& =\sum_{i}\left(\left(r_{i} a_{i} m_{i}\right) \otimes \overline{1}\right) \\
& =\left(\sum_{i} r_{i} a_{i} m_{i}\right) \otimes \overline{1}
\end{aligned}
$$

2. Modules and linear maps

Thus we get:

$$
\begin{aligned}
& \Longrightarrow \varphi\left(\left(\sum_{i} a_{i} r_{i} m_{i}\right) \otimes \overline{1}\right)=\overline{0} \\
& \Longrightarrow \\
& \Longrightarrow \sum_{i} a_{i} r_{i} m_{i}=\overline{0} \\
& \Longrightarrow \exists \sum_{i} a_{i} r_{i} m_{i} \in I \cdot M \\
& \Longrightarrow\left(\sum_{i} r_{i} a_{i} m_{i}\right) \otimes \overline{1}=\left(b_{j} \in I: \sum_{i} a_{i} r_{i} m_{j} n_{j}\right) \otimes \overline{1}=\sum_{j} b_{j} n_{j} \\
& \quad=\sum_{j}\left(b_{j} n_{j} \otimes \overline{1}\right) \\
& \quad=\sum_{j}\left(0 \otimes \overline{b_{j}}\right)=\sum_{j}\left(n_{j} \otimes \overline{0}\right)=0 \otimes \overline{0}
\end{aligned}
$$

\Longrightarrow Injectivity
(e) Let R^{\prime} be an R-algebra and let M be an R-module. Then:
$M \otimes_{R} R^{\prime}$ is actually an R^{\prime}-module via:

$$
\underbrace{r^{\prime}}_{\in R^{\prime}}(m \otimes r):=m \otimes\left(r^{\prime} r\right)
$$

E.g.: $M=\mathbb{Z}^{n}, R=\mathbb{Z}, R^{\prime}=\mathbb{Q}$

$$
\Longrightarrow \mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{n}
$$

Proposition 2.32. Let $M, N, P ; M_{\lambda}, \lambda \in \Lambda$ be R-modules. Then:
(a) $M \otimes_{R} N \cong N \otimes_{R} M$ via:
$m \otimes n \mapsto n \otimes m$
(b) $\left(M \otimes_{R} N\right) \otimes_{R} P \cong M \otimes_{R}\left(N \otimes_{R} P\right) \cong M \otimes_{R} N \otimes_{R} P$ via:
$(m \otimes n) \otimes p \mapsto m \otimes(n \otimes p) \mapsto m \otimes n \otimes p$
(c) $M \otimes\left(\bigoplus_{\lambda \in \Lambda} M_{\lambda}\right) \cong \bigoplus_{\lambda \in \Lambda}\left(M \otimes M_{\lambda}\right) v i a:$
$m \otimes\left(m_{\lambda}\right)_{\lambda \in \Lambda} \mapsto\left(m \otimes m_{\lambda}\right)_{\lambda \in \Lambda}$
In particular: $M \otimes_{R} R^{n} \cong M^{n}$

2. Modules and linear maps

(d) $\operatorname{Hom}_{R}(M \otimes N, P) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ via:

$$
\varphi \mapsto\left(\tilde{\varphi}: M \rightarrow \operatorname{Hom}_{R}(N, P): m \mapsto(N \rightarrow P: n \mapsto \varphi(m \otimes n))\right)
$$

Proof.
(a) clear, since $N \otimes_{R} M$ satisfies the universal property.
(b) Exercise
(c) $M \times \bigoplus_{\lambda} M_{\lambda} \xrightarrow{\text { bilin. }} \bigoplus_{\lambda}\left(M \otimes M_{\lambda}\right)$ via:
$\left(m,\left(m_{\lambda}\right)_{\lambda}\right) \mapsto\left(m \otimes m_{\lambda}\right)_{\lambda}$
So there exists a unique $\alpha: M \otimes \bigoplus_{\lambda} M_{\lambda}$, such that:
$m \otimes\left(m_{\lambda}\right)_{\lambda} \mapsto\left(m \otimes m_{\lambda}\right)_{\lambda}$
Show: α is surjective:

$$
\begin{aligned}
\bigoplus_{\lambda}\left(M \otimes M_{\lambda}\right) & \left.=\left\langle\left(m \otimes m_{\lambda}\right)_{\lambda}\right| m \in M, m_{\lambda} \in M_{\lambda}, \text { only fin. many } m_{\lambda} \text { non-zero }\right\rangle \\
& =\operatorname{Im}(\alpha)
\end{aligned}
$$

Show: α is injective:
Since $M \times M_{\lambda} \rightarrow M \otimes \bigoplus_{\mu \in \Lambda} M_{\mu}$
$\left(m, m_{\lambda}\right) \mapsto m \otimes\left(m_{\mu}\right)_{\mu \in \Lambda}$ with $m_{\mu}= \begin{cases}m_{\lambda} & , \lambda=\mu \\ 0 & , \lambda \neq \mu\end{cases}$
is bilinear, there exists a unique $a_{\lambda}: M \otimes M_{\lambda} \rightarrow M \otimes \bigoplus_{\mu \in \Lambda} M_{\mu}$, such that:
$m \otimes m_{\lambda} \mapsto m \otimes\left(m_{\mu}\right)_{\mu \in \Lambda}$, with m_{μ} as above.
So there is a unique

$$
\begin{aligned}
\alpha^{\prime}: & \bigoplus_{\lambda \in \Lambda} M \otimes M_{\lambda} \rightarrow M \otimes \bigoplus_{\mu \in \Lambda} M_{\mu} \\
& \left(m \otimes m_{\lambda}\right)_{\lambda \in \Lambda} \mapsto \sum_{\lambda \in \Lambda} a_{\lambda}\left(m \otimes m_{\lambda}\right)
\end{aligned}
$$

Obviously: $\left(\alpha^{\prime} \circ \alpha\right)\left(m \otimes\left(m_{\lambda}\right)_{\lambda}\right)=\ldots=m \otimes\left(m_{\lambda}\right)_{\lambda}$
$\Longrightarrow \alpha^{\prime} \circ \alpha=\mathrm{id} \Longrightarrow \alpha$ is injective.

2. Modules and linear maps

(d) Clearly $\gamma: \varphi \mapsto \tilde{\varphi}$ is an R-linear map. Our claim is now, that γ is bijective: If $\psi: M \rightarrow \operatorname{Hom}_{R}(N, P)$ is R-linear, then

$$
\left.\begin{array}{rl}
\psi^{\prime}: & M \times N
\end{array}\right) P P
$$

is bilinear. Thus there exists a unique homomorphism

$$
\begin{aligned}
\varphi & : M \otimes N \rightarrow P \\
& m \otimes n \mapsto \psi(m)(n)=\varphi(m \otimes n)=\tilde{\varphi}(m)(n)=\gamma(\varphi)(m)(n)
\end{aligned}
$$

Thus $\psi=\gamma(\varphi) \in \operatorname{Im}(\gamma)$ and γ is surjective. Injectivity is obvious.

Proposition 2.33 (Exactness). Let $M, M^{\prime}, M^{\prime \prime}, N$ be R-modules.
(a) $M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \longrightarrow 0$ is exact \Longleftrightarrow
$\forall P R$-module: $0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, P\right) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(M, P) \xrightarrow{\varphi^{*}} \operatorname{Hom}_{R}\left(M^{\prime}, P\right)$ is exact.
(b) If $M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \longrightarrow 0$ is exact, then:
$M^{\prime} \otimes N \xrightarrow{\varphi \otimes \mathrm{id}_{N}} M \otimes N \xrightarrow{\psi \otimes \mathrm{id}_{N}} M^{\prime \prime} \otimes N \longrightarrow 0$ is exact (i.e. the tensor product is right exact!).
(c) If $0 \longrightarrow M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \longrightarrow 0$ is split exact, then: $0 \longrightarrow M^{\prime} \otimes N \xrightarrow{\varphi \otimes \operatorname{id}_{N}} M \otimes N \xrightarrow{\psi \otimes \operatorname{id}_{N}} M^{\prime \prime} \otimes N \longrightarrow 0 \quad$ is split exact.

Proof.
(a) Exercise
2. Modules and linear maps
(b)

$$
\begin{aligned}
& M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0 \text { is exact } \\
& \stackrel{(a)}{\longrightarrow} 0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, \operatorname{Hom}_{R}(N, P)\right) \longrightarrow \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) \longrightarrow \ldots \\
& \ldots \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime}, \operatorname{Hom}_{R}(N, P)\right) \\
& \text { is exact } \forall P \\
& \stackrel{2.32}{\Longrightarrow} 0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime} \otimes N, P\right) \longrightarrow \operatorname{Hom}_{R}(M \otimes N, P) \longrightarrow \ldots \\
& \cdots \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime} \otimes N, P\right) \\
& \text { is exact } \forall P \\
& \stackrel{(a)}{\Longrightarrow} M^{\prime} \otimes N \longrightarrow M \otimes N \longrightarrow M^{\prime \prime} \otimes N \longrightarrow 0 \text { is exact }
\end{aligned}
$$

(c) Too long and tedious, skipped.

Example 2.34. (The tensor product is not left exact in general) The sequence

$$
0 \longrightarrow \mathbb{Z} \stackrel{\cdot 2}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

is exact, but

$$
0 \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{i} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}
$$

is not exact, since $i(1 \otimes \overline{1})=2 \otimes \overline{1}=0$, so i is not injective!
Definition 2.35. Let R be a ring, P be an R-module.
(a) P is called flat over R
$: \Longleftrightarrow$ For all exact sequences $0 \longrightarrow M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime} \longrightarrow 0$ the sequence

$$
0 \longrightarrow M^{\prime} \otimes P \xrightarrow{\varphi \otimes \mathrm{id}_{P}} M \otimes P \xrightarrow{\psi \otimes \mathrm{id}_{P}} M^{\prime \prime} \otimes P \longrightarrow 0
$$

is also exact.
\Longleftrightarrow For all exact sequences $M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime}$ the sequence

$$
M^{\prime} \otimes P \xrightarrow{\varphi \otimes \operatorname{id}_{P}} M \otimes P \xrightarrow{\psi \otimes \operatorname{id}_{P}} M^{\prime \prime} \otimes P
$$

2. Modules and linear maps

is also exact.
\Longleftrightarrow For all injective maps $\varphi: M^{\prime} \Longleftrightarrow M$ the map

$$
\varphi \otimes \operatorname{id}_{P}: M^{\prime} \otimes P \rightarrow M \otimes P
$$

is also injective.
(b) P is called projective
$: \Longleftrightarrow \forall M \xrightarrow{\varphi} N, \psi: P \rightarrow N \exists \alpha$, such that

commutes.
(c) P is called finitely presented
$: \Longleftrightarrow \exists k, l \in \mathbb{N}, \varphi$, such that:

$$
R^{k} \longrightarrow R^{l} \xrightarrow{\varphi} P \longrightarrow 0 \text { is exact. }
$$

Proposition 2.36. For an R-module P the following are equivalent:
(a) P is projective
(b) For all surjective maps $M \xrightarrow{\varphi} N$ the map $\varphi_{*}: \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}(P, N)$ is surjective.
(c) If $0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$ is exact, then it is split exact.
(d) There exists an R-module M, such that $M \oplus P$ is free.

Proof. Exercise.

Example 2.37.

(a) P is fintely presented $\Longleftrightarrow P$ is finitely generated and $\operatorname{ker}(\varphi)$ is finitely generated by $\left(\varphi: R^{l} \rightarrow P, r_{i} \mapsto p_{i}\right)$.
(b) P is free $\Longrightarrow P$ is projective. In particular R^{n} is projective.
(c) P free $\Longrightarrow P$ flat
2. Modules and linear maps

Proof. Let $P=\bigoplus_{\lambda} R, \varphi: M^{\prime} \rightarrow M$ injective.

So $\left(m_{\lambda}^{\prime}\right) \in \operatorname{ker}(\tilde{\varphi}) \Longleftrightarrow \varphi\left(m_{\lambda}^{\prime}\right)=0 \forall \lambda$
$\Longleftrightarrow m_{\lambda}^{\prime} \in \operatorname{ker}(\varphi) \forall \lambda \stackrel{\varphi \text { inj. }}{\Longleftrightarrow} m_{\lambda}^{\prime}=0 \forall \lambda$
Hence P is flat.
(d) Let $R=K[x], P=K[x, y] /\langle x y\rangle$ and consider the map
$\varphi: M^{\prime}:=K[x]^{C^{\cdot x}}-K[x]=: M$. Then:
$\left(\operatorname{id}_{P} \otimes \varphi\right)(\bar{y} \otimes 1)=\bar{y} \otimes x=\overline{x y} \otimes 1=\overline{0} \otimes 1=0, \operatorname{so~}^{\operatorname{id}}{ }_{P} \otimes \varphi: P \otimes_{R} M^{\prime} \rightarrow P \otimes_{R} M$ is not injectice. Thus, P is not flat.

Proposition 2.38. P projective $\Longrightarrow P$ flat

Proof. P projective \qquad $\exists N: P \oplus N$ is free.

Thus, by 2.37(c) and for any injective $\operatorname{map} \varphi: M^{\prime} \rightarrow M$:

$\Longrightarrow \varphi \otimes \operatorname{id}_{P}$ is injective $\Longrightarrow P$ is flat.
Proposition 2.39. If (R, \mathfrak{m}) is local and P is finitely presented, then:

$$
P \text { projective } \Longleftrightarrow P \text { free }
$$

2. Modules and linear maps

Proof. We only have to show " \Longrightarrow ": Choose a minimal set of generators for P, say $\left(m_{1}, \ldots, m_{n}\right)$. Thus the sequence

$$
0 \longrightarrow \operatorname{ker}(\varphi) \longrightarrow R^{n} \stackrel{\varphi}{\longrightarrow} P \longrightarrow 0
$$

is exact (where $\varphi\left(e_{i}\right)=m_{i}$ and $\operatorname{ker}(\varphi)$ is finitely generated). Thus, by 2.36 the sequence is also split exact and by $2.31,2.33$ tensorizing with R / m yields the following split exact sequence:

$$
0 \longrightarrow \operatorname{ker}(\varphi) \otimes R / \mathrm{m} \longrightarrow R^{n} \otimes R / \mathrm{m} \longrightarrow P \otimes R / \mathrm{m} \longrightarrow 0
$$

which is isomorphic to

$$
0 \longrightarrow \operatorname{ker}(\varphi) / \mathrm{m} \operatorname{ker}(\varphi) \longrightarrow(R / \mathrm{m})^{n} \longrightarrow P / \mathrm{m} P \longrightarrow 0
$$

Since these are vector spaces, $(R / \mathrm{m})^{n}=\operatorname{ker}(\varphi) / \mathrm{m} \operatorname{ker}(\varphi)^{\oplus} P / \mathrm{m} P$ and $\operatorname{dim}(R / \mathrm{m})^{n}=$ $\operatorname{dim} P / m P=n$ by Nakayama's lemma we have that

$$
\begin{gathered}
\operatorname{ker}(\varphi) / \mathrm{m} \operatorname{ker}(\varphi)=0 \\
\Longrightarrow \operatorname{ker}(\varphi)=\boldsymbol{m} \operatorname{ker}(\varphi) \stackrel{\mathrm{NAK}}{\Longrightarrow} \operatorname{ker}(\varphi)=0
\end{gathered}
$$

Thus φ is an isomorphism and $P \cong R^{n}$
Remark 2.40. With some homological algebra, we get

$$
0 \longrightarrow \operatorname{Tor}_{1}^{R}(P, R / \mathrm{m}) \longrightarrow \operatorname{ker}(\varphi) \otimes R / \mathrm{m} \longrightarrow R^{n} \otimes R / \mathrm{m} \longrightarrow P \otimes R / \mathrm{m} \longrightarrow 0
$$

is exact and:

$$
\begin{aligned}
P \text { flat } & \Longleftrightarrow \operatorname{Tor}_{1}^{R}(P, R / m)=0 \\
& \Longleftrightarrow P \text { free }
\end{aligned}
$$

3. Localisation

Motivation. How did we construct the rational numbers?
Let $R=\mathbb{Z}, S=\mathbb{Z} \backslash\{0\}$

$$
\Longrightarrow \mathbb{Q}=R \times S / \sim
$$

with

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right): \Longleftrightarrow r s^{\prime}=r^{\prime} s
$$

The operations on \mathbb{Q} are defined by

- $\frac{r}{s}+\frac{r^{\prime}}{s^{\prime}}=\frac{r s^{\prime}+r^{\prime} s}{s s^{\prime}}$
- $\frac{r}{s} \cdot \frac{r^{\prime}}{s^{\prime}}=\frac{r r^{\prime}}{s s^{\prime}}$

Note. $s, s^{\prime} \in S$ implies $s s^{\prime} \in S$
Definition 3.1. Let R be a ring.
(a) A subset $S \subseteq R$ is called multiplicatively closed : $\Longleftrightarrow \forall s, s^{\prime} \in S: s s^{\prime} \in S$ and $1_{R} \in S$.
(b) If $S \subseteq R$ is multipl. closed, then we define for $(r, s),\left(r^{\prime}, s^{\prime}\right) \in R \times S$:

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right): \Longleftrightarrow \exists u \in S: u\left(r s^{\prime}-r^{\prime} s\right)=0
$$

Note. The ' $\exists u \ldots$...' is only really needed to ensure transitivity in the following proof.
Our claim is now, that \sim is an equivalency relation:
Proof.

- Reflexivity: $1(r s-r s)=0 \Longrightarrow(r, s) \sim(r, s)$
- Symmetry:

$$
\begin{aligned}
& (r, s) \sim\left(r^{\prime}, s^{\prime}\right) \\
\Longrightarrow & \exists u \in S: u\left(r s^{\prime}-r^{\prime} s\right)=0 \\
\Longrightarrow & u\left(r^{\prime} s-r s^{\prime}\right)=0 \\
\Longrightarrow & \left(r^{\prime}, s^{\prime}\right) \sim(r, s)
\end{aligned}
$$

3. Localisation

- Transitivity:

$$
\begin{aligned}
& (r, s) \sim\left(r^{\prime}, s^{\prime}\right),\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right) \\
\Longrightarrow & \exists u, v \in S: u\left(r s^{\prime}-r^{\prime} s\right)=0, v\left(r^{\prime} s^{\prime \prime}-r^{\prime \prime} s^{\prime}\right)=0 \\
\Longrightarrow & 0=v u\left(r s^{\prime} s^{\prime \prime}-r^{\prime} s s^{\prime \prime}\right)+\left(r^{\prime} s^{\prime \prime} s-r^{\prime \prime} s^{\prime} s\right) v u \\
& =\underbrace{u v s^{\prime}}_{\in S}\left(r s^{\prime \prime}-r^{\prime \prime} s\right) \\
\Longrightarrow & (r, s) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)
\end{aligned}
$$

We then write

$$
[(r, s)]=: \frac{r}{s}
$$

and

$$
S^{-1} R:=R \times S / \sim=\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\}
$$

Define operations on $S^{-1} R$ by:

- $\frac{r}{s}+\frac{r^{\prime}}{s^{\prime}}=\frac{r s^{\prime}+r^{\prime} s}{s s^{\prime}}$
- $\frac{r}{s} \cdot \frac{r^{\prime}}{s^{\prime}}=\frac{r r^{\prime}}{s s^{\prime}}$

We claim, that $\left(S^{-1} R,+, \cdot\right)$ is a commutative ring with $1_{S^{-1} R}=\frac{1_{R}}{1_{R}}=\frac{s}{s} \forall s \in S$ (without proof).
We call $S^{-1} R$ the localisation of R at S.
Remark 3.2. There is a natural ring extension

$$
i: R \longrightarrow S^{-1} R: r \mapsto \frac{r}{1}
$$

Note.

(a) $s \in S \Longrightarrow i(s)=\frac{s}{1}$ is a unit
(b) $i(r)=0 \Longleftrightarrow \exists u \in S: u r=0$.

In particular: i is injective $\Longleftrightarrow S$ contains no zero-divisors.
(c) Every element of $S^{-1} R$ has the form $i(s)^{-1} i(r)=\frac{r}{s}$ for some $r \in R, s \in S$.
(d) Let $j: R \longrightarrow R^{\prime}$, s.t. $j(S) \subseteq\left(R^{\prime}\right)^{*}$. Then there exists a unique linear φ : $S^{-1} R \longrightarrow R^{\prime}$ such that

3. Localisation

commutes.
Moreover, if j satisfies the first three criteria, then φ is an isomorphism.
(e) $J \preccurlyeq S^{-1} R \Longrightarrow\left(J^{c}\right)^{e}=J$
(f) $I \preccurlyeq R \Longrightarrow\left(I^{e} \neq S^{-1} R \Longleftrightarrow I \cap S=\emptyset\right)$

Proof.

- (a)-(d) hold by definition
(e):

$$
\begin{aligned}
& " \subseteq ": \text { By } 1.10 \\
& " \supseteq ": a=\frac{r}{s} \in J \Longrightarrow \frac{r}{1}=\frac{s}{1} a \in J \\
& \quad \Longrightarrow r \in i^{-1}(J)=J^{c} \Longrightarrow \frac{r}{1} \in\left(J^{c}\right)^{e} \Longrightarrow a=\frac{1}{s} \frac{r}{1} \in\left(J^{c}\right)^{e}
\end{aligned}
$$

(f):
" $\Longrightarrow "$: Suppose $I \cap S \neq \emptyset$ Then $\frac{s}{1} \in I^{e}$, which is a unit. Therefore $I^{e}=S^{-1} R \notin$
$" \Longleftarrow ":$ Suppose $\left\{\frac{a}{s}, a \in I, s \in S\right\}=I^{e}=S^{-1} R \ni \frac{1}{1}$. Then $\exists a \in I, s \in S: \frac{a}{s}=\frac{1}{1}$ and therefore $\exists u \in S: \underbrace{u a 1}_{\in I}=\underbrace{u s 1}_{\in S} \Longrightarrow I \cap S \neq \emptyset$ z

Example 3.3.

(a) $0 \neq R$ any ring, $S=\{r \in R \mid r$ is not a zero-divisor $\}$

$$
\Longrightarrow \operatorname{Quot}(R):=S^{-1} R
$$

is the total ring of fractions or total quotient ring.
In particular: If R is an I.D., then $S=R \backslash\{0\}$ and $\operatorname{Quot}(R)$ is a field (the quotient field of R).
E.g.:

- $R=\mathbb{Z} \Longrightarrow \operatorname{Quot}(R)=\mathbb{Q}$
- $R=K[\underline{x}] \Longrightarrow \operatorname{Quot}(R)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in K[\underline{x}], g \neq 0\right\}=: K(\underline{x})$
(b) R ring, $f \in R, S:=\left\{f^{n} \mid n \geq 0\right\}$

$$
\Longrightarrow R_{f}:=S^{-1} R=\left\{\left.\frac{r}{f^{n}} \right\rvert\, n \geq 0, r \in R\right\}
$$

is the localisation at f.
E.g.: $R=\mathbb{Z}, f=p \in P \Longrightarrow \mathbb{Z}_{p}=\left\{\left.\frac{z}{p^{n}} \right\rvert\, z \in \mathbb{Z}, n \geq 0\right\} \leq \mathbb{Q}$

3. Localisation

(c) R ring, $P \in \operatorname{Spec}(R), S=R \backslash P$

$$
R_{P}:=S^{-1} R=\left\{\left.\frac{r}{s} \right\rvert\, s, r \in R, s \notin P\right\}
$$

is the localisation at P.
E.g.: $R=\mathbb{Z}, P=\langle p\rangle, p \in \mathbb{P}$. Then:

- $\left.\mathbb{Z}_{P}=\left\{\left.\frac{z}{s} \right\rvert\, z \in \mathbb{Z}, p \nmid s\right\}\right] \leq \mathbb{Q}$
- $\mathbb{Z}_{p} \cap \mathbb{Z}_{\langle p\rangle}=\mathbb{Z}$

If R is an I.D., $P=\langle 0\rangle \Longrightarrow R_{\langle 0\rangle}=\operatorname{Quot}(R)$
(d) $S^{-1} R=0 \Longleftrightarrow 0 \in S$

Proof. We show two directions:

- " "": $0 \in S \Longrightarrow \frac{a}{s}=\frac{0}{1} \forall a \in R, s \in S$, since $0 \cdot(a \cdot 1)=0 \cdot(s \cdot 0)$
-" "": $\frac{1}{1}=\frac{0}{1} \Longrightarrow \exists u \in S: u \cdot 1 \cdot 1=u \cdot 1 \cdot 0=0 \Longrightarrow u=0 \in S$

Proposition 3.4. $P \in \operatorname{Spec}(R) \Longrightarrow R_{P}$ is a local ring with $P \cdot R_{P}=P^{e} \triangleleft \cdot R_{P}$.
Proof. We have to show: $R_{P} \backslash P^{e}=R_{P}^{*}$:
$" \supseteq ": P \cap(R \backslash P)=\emptyset \xlongequal{\boxed{3.2}} P^{e} \subsetneq R_{P}$. Thus, P^{e} contains no units $\Longrightarrow R_{P}^{*} \subseteq R_{P} \backslash P^{e}$ $" \subseteq$ ": $\frac{r}{s} \in R_{P} \backslash P^{e} \Longrightarrow r, s \notin P \Longrightarrow \frac{s}{r} \in R_{P}$ and $\frac{r}{s} \frac{s}{r}=1 \Longrightarrow \frac{r}{s} \in R_{P}^{*}$

Example.

$$
K:=\mathbb{R}, R:=K[x, y], P:=\langle x-1, y-1\rangle, R_{P}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in K[x, y], g(1,1) \neq 0\right\}
$$

Then $\frac{f}{g}: U_{\epsilon}(1,1) \longrightarrow R, p \mapsto \frac{f(p)}{g(p)}$ is well-defined.
Definition 3.5. Let R be a ring, $S \subseteq R$ multipl. closed and M, N, P be R-modules.
(a) Define

$$
S^{-1} M:=\left\{\left.\frac{m}{s} \right\rvert\, m \in M, s \in S\right\}=M \times S / \sim
$$

where

- $(m, s) \sim\left(m^{\prime}, s^{\prime}\right): \Longleftrightarrow \exists u \in S: u\left(m s^{\prime}-m^{\prime} s\right)=0$
- $\frac{m}{s}:=[(m, s)]$
- $\frac{m}{s}+\frac{m^{\prime}}{s^{\prime}}=\frac{m s^{\prime}+m^{\prime} s}{s s^{\prime}}$

3. Localisation

- $\frac{m}{s} \cdot \frac{m^{\prime}}{s}=\frac{m m^{\prime}}{s s^{\prime}}$

Note. $\bullet \sim$ is an equivalence relation
-,$+ \cdot$ are well defined

- $\left(S^{-1} M,+, \cdot\right)$ is an $S^{-1} R$-module
(b) $\varphi \in \operatorname{Hom}_{R}(M, N)$. Define:

$$
\operatorname{Hom}_{S^{-1} R}\left(S^{-1} M, S^{-1} N\right) \ni S^{-1} \varphi: S^{-1} M \longrightarrow S^{-1} N: \frac{m}{s} \mapsto \frac{\varphi(m)}{s}
$$

Note.

- If $\varphi \in \operatorname{Hom}_{R}(M, N), \psi \in \operatorname{Hom}_{R}(N, P)$, then $S^{-1}(\psi \circ \varphi)=S^{-1} \psi \circ S^{-1} \varphi$.
- $\left.S^{-1}\left(\mathrm{id}_{M}\right)\right)=\mathrm{id}_{S^{-1} M}$
- Thus: S^{-1} is a covariant functor.
(c) Notation: If $S=\left\{f^{n} \mid n \geq 0\right\}$, then
- $S^{-1} M=: M_{f}$
- $S^{-1} \varphi=: \varphi_{f}$

If $S=R \backslash P, P \in \operatorname{Spec}(R)$, then $M_{P}:=S^{-1} M, \varphi_{P}:=S^{-1} \varphi$
Proposition 3.6. (S^{-1} is an exact functor) Let $S \subseteq R$ be multipl. closed and $M^{\prime} \xrightarrow{\varphi} M \xrightarrow{\psi} M^{\prime \prime}$ an exact, R-linear sequence. Then

$$
S^{-1} M^{\prime} \xrightarrow{S^{-1} \varphi} S^{-1} M \xrightarrow{S^{-1} \psi} S^{-1} M^{\prime \prime}
$$

is also exact.

Proof. We need to show: $\operatorname{Im}\left(S^{-1} \varphi\right)=\operatorname{ker}\left(S^{-1} \psi\right)$
$" \subseteq ": S^{-1} \psi \circ S^{-1} \varphi=S^{-1}(\underbrace{\psi \circ \varphi}_{=0})=0$. Thus $\operatorname{Im}\left(S^{-1} \varphi\right) \subseteq \operatorname{ker}\left(S^{-1} \psi\right)$.
" \supseteq ": Let $\frac{m}{s} \in \operatorname{ker}\left(S^{-1} \psi\right) \Longrightarrow \frac{\psi(m)}{s}=S^{-1} \psi\left(\frac{m}{s}\right)=\frac{0}{1}$

$$
\Longrightarrow \exists u \in S: \underbrace{u \psi(m)}_{=\psi(u m)}=u s \cdot 0=0
$$

$\Longrightarrow u m \in \operatorname{ker}(\psi)$
\Longrightarrow (by exactn.) $u m \in \operatorname{Im}(\varphi) \Longrightarrow \exists m^{\prime} \in M^{\prime}: \varphi\left(m^{\prime}\right)=u m$
$\Longrightarrow \frac{m}{s}=\frac{u m}{u s}=\frac{\varphi\left(m^{\prime}\right)}{u s}=S^{-1} \varphi\left(\frac{m^{\prime}}{u s}\right) \in \operatorname{Im}\left(S^{-1} \varphi\right)$

3. Localisation

Corollary 3.7. Let R be a ring, $M_{\lambda}, M, M^{\prime} R$ - modules, $\lambda \in \Lambda, N, N^{\prime} \leq M, \varphi \in$ $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)$. Then:
(a) $S^{-1} R \otimes_{R} M \cong S^{-1} M$ $\left(b y \frac{r}{s} \otimes m \mapsto \frac{r m}{s}\right.$)
(b) $S^{-1} N+S^{-1} N^{\prime}=S^{-1}\left(N+N^{\prime}\right)$
(c) $S^{-1} N \cap S^{-1} N^{\prime}=S^{-1}\left(N \cap N^{\prime}\right)$
(d) $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$
(e) $S^{-1}\left(\bigoplus_{\lambda \in \Lambda} M_{\lambda}\right) \cong \bigoplus_{\lambda \in \Lambda} S^{-1} M_{\lambda}$
(f) $\operatorname{ker}\left(S^{-1} \varphi\right)=S^{-1} \operatorname{ker}(\varphi)$
$\operatorname{Im}\left(S^{-1} \varphi\right)=S^{-1} \operatorname{Im}(\varphi)$
Proof.
(a)

Note. $S^{-1} R \times M \longrightarrow S^{-1} M,\left(\frac{r}{s}, m\right) \mapsto \frac{r m}{s}$ is bilinear.
Thus $\exists_{1} \alpha: S^{-1} R \otimes_{R} M \longrightarrow S^{-1} M: \frac{r}{s} \otimes m \mapsto \frac{r m}{s}$. Our claim is, that α is an isomorphism.
α is clearly surjective, since $\frac{m}{s}=\frac{1 m}{s}=\alpha\left(\frac{1}{s} \otimes m\right) \in \operatorname{Im}(\alpha)$. It remains to show that α is injective:
Let $x=\sum_{i=1}^{k} \frac{r_{i}}{s_{i}} \otimes m_{i} \in \operatorname{ker} \alpha$. Now we transform all fractions to a common denominator, i.e. $\exists \tilde{r}_{i} \in R, s \in S: \frac{r_{i}}{s_{i}}=\frac{\tilde{r}_{i}}{s}$

$$
\begin{aligned}
\Longrightarrow x & =\sum_{i=1}^{k} \frac{\tilde{r}_{i}}{s} \otimes m_{i} \\
& =\sum_{i=1}^{k} \frac{1}{s} \otimes \tilde{r}_{i} m_{i} \\
& =\frac{1}{s} \otimes\left(\sum_{i=1}^{k} \tilde{r}_{i} m_{i}\right), x \in \operatorname{ker} \alpha
\end{aligned}
$$

Thus

$$
\frac{0}{1}=\alpha(x)=\frac{\sum_{i=1}^{k} \tilde{r}_{i} m_{i}}{s} \Longrightarrow \exists u \in S: \underbrace{u \cdot \sum_{i=1}^{k} \tilde{r}_{i} m_{i}}_{=\sum\left(u \tilde{r}_{i}\right) m_{i}}=0
$$

$\Longrightarrow x=\frac{1}{s u} \otimes \sum_{i=1}^{k} u \tilde{r}_{i} m_{i}=0$

3. Localisation

(b) clear
(c) We show two inclusion:
"つ":
$" \subseteq$ ": Let $\frac{n}{s}=\frac{n^{\prime}}{s^{\prime}}$ with $n \in N, n^{\prime} \in N^{\prime}, s, s^{\prime} \in S$.
$\Longrightarrow \exists u \in S: \underbrace{u s^{\prime} n}_{\in N}=\underbrace{u s n^{\prime}}_{\in N^{\prime}} \in N \cap N^{\prime}$
$\Longrightarrow \frac{n}{s}=\frac{u s^{\prime} n}{u s^{\prime} s} \in S^{-1}\left(N \cap N^{\prime}\right)$
(d) We know that

$$
0 \longrightarrow N \longrightarrow M \longrightarrow M / N \longrightarrow 0
$$

is exact. Thus, by 3.6 we know that

$$
0 \longrightarrow S^{-1} N \longrightarrow S^{-1} M \longrightarrow S^{-1}(M / N) \longrightarrow 0
$$

is exact.

$$
\Longrightarrow S^{-1}(M / N) \cong S^{-1} M / S^{-1} N
$$

(e) Follows from (a) and 2.32
(f) We know that

$$
0 \longrightarrow \operatorname{ker}(\varphi) \longrightarrow M \xrightarrow{\varphi} M^{\prime} \longrightarrow \operatorname{Coker}(\varphi) \longrightarrow 0
$$

is exact and by 3.6

$$
0 \longrightarrow S^{-1}(\operatorname{ker}(\varphi)) \longrightarrow S^{-1} M \xrightarrow{S^{-1} \varphi} S^{-1} M^{\prime} \longrightarrow S^{-1}(\operatorname{Coker}(\varphi)) \longrightarrow 0
$$

is exact
$\Longrightarrow \operatorname{ker}\left(S^{-1} \varphi\right)=S^{-1}(\operatorname{ker}(\varphi)), \operatorname{Coker}\left(S^{-1} \varphi\right)=S^{-1}(\operatorname{Coker}(\varphi))$

Example 3.8. Let $R=\mathbb{Z}, p$ prime, $N_{p}:=\langle p\rangle \preccurlyeq \mathbb{Z}, S=\mathbb{Z} \backslash\{0\}$. Then:

- $\bigcap N_{p}=\{0\}$, thus $S^{-1}\left(\bigcap N_{p}=\{0\}\right)=0$, but p prime $\quad p$ prime
- $S^{-1} N_{p}=\mathbb{Q} \forall p \Longrightarrow \bigcap_{p \text { prime }} S^{-1} N_{p}=\mathbb{Q}$

So localisation does not commute with arbitrary intersections!

3. Localisation

Proposition 3.9. $S \subseteq R$ multiplicatively closed, then:

$$
\{P \in \operatorname{Spec}(R) \mid P \cap S=\emptyset\} \xrightarrow{1: 1} \operatorname{Spec}\left(S^{-1} R\right), P \mapsto P^{e}=S^{-1} P=\langle P\rangle_{S^{-1} R}
$$

is bijective
Proof. Exercise
Philosophy 3.10. Let (\mathcal{P}) be a property of R - modules or of R-linear maps (e.g. "finitely generated", "injective",...). We call (\mathcal{P}) local, iff:

$$
M(\text { or } \varphi) \text { has }(\mathcal{P}) \Longleftrightarrow M_{P}\left(\text { or } \varphi_{P}\right) \text { has }(\mathcal{P}) \forall P \in \operatorname{Spec}(R)
$$

Proposition 3.11 ("being 0 " is a local property). For an R-module M the following are equivalent:
(a) $M=0$
(b) $M_{P}=0 \forall P \in \operatorname{Spec}(R)$
(c) $M_{\mathfrak{m}}=0 \forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}(R)$

Proof.

- "(a) $\Longrightarrow(b) ": \checkmark$
- "(b) $\Longrightarrow(c) ": \checkmark$
- "(c) $\Longrightarrow(\mathrm{a}) ":$ Suppose $M \neq 0$

$$
\begin{aligned}
& \Longrightarrow \exists 0 \neq m \in M \Longrightarrow \operatorname{ann}(m) \preccurlyeq R, \operatorname{ann}(m) \subsetneq R \\
& \Longrightarrow \exists \mathfrak{m} \triangleleft \cdot R: \operatorname{ann}(m) \subseteq \mathfrak{m} \\
& \Longrightarrow u m \neq 0 \forall u \in R \backslash \mathfrak{m} \\
& \Longrightarrow \frac{m}{1} \neq \frac{0}{1} \text { in } M_{\mathfrak{m}} \Longrightarrow M_{\mathfrak{m}} \neq 0 \sharp
\end{aligned}
$$

Corollary 3.12 (Injectivity and Surjectivity are local). For an R-linear map φ : $M \longrightarrow N$ the following are equivalent:
(a) φ is injective (surjective)
(b) φ_{P} is injective (surjective) $\forall P \in \operatorname{Spec}(R)$
(c) $\varphi_{\mathfrak{m}}$ is injective (surjective) $\forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}(R)$

Proof. By 3.7 and 3.11 since $\varphi \operatorname{inj} \Longleftrightarrow \operatorname{ker}(\varphi)=0$ etc.

3. Localisation

Proposition 3.13. Let R be an I.D., $f \in R$

$$
\Longrightarrow R_{f}=\bigcap_{P \in \operatorname{Spec}(R), f \notin P} R_{P} \leq \operatorname{Quot}(R)
$$

In particular: $R \stackrel{f=1}{=} \bigcap_{P \in \operatorname{Spec}(R)} R_{P}$.
Proof. $S=\left\{f^{n} \mid n \geq 0\right\}$
$" \subseteq ": f \notin P \Longrightarrow S \subseteq R \backslash P$ and thus, since R is an I.D. $S^{-1} R=R_{f} \subseteq R_{P} \forall P \in$ $\operatorname{Spec}(R)$
$" \supseteq$ ": Let $x \in \operatorname{Quot}(R)$,

$$
I_{x}:=\{r \in R \mid r x \in R\} \preccurlyeq R
$$

Then

$$
\begin{aligned}
x \in R_{P} & \Longleftrightarrow \exists a \in R, s \notin P: x=\frac{a}{s} \\
& \Longleftrightarrow \exists s \in R \backslash P: s x \in R \\
& \Longleftrightarrow I_{x} \nsubseteq P
\end{aligned}
$$

So if $x \in \underset{P \in \operatorname{Spec}(R), f \notin P}{ } R_{P} \Longrightarrow I_{x} \nsubseteq P \forall P$ with $f \notin P$

$$
\begin{aligned}
& \underline{\underline{3.9}}\left(I_{x}\right)_{f} \nsubseteq \mathfrak{m} \forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}\left(R_{f}\right) \\
& \Longrightarrow\left(I_{x}\right)_{f}=R_{f} \\
& \Longrightarrow I_{x} \cap S \neq \emptyset \\
& \Longrightarrow \exists f^{n} \in I_{x} \Longrightarrow f^{n} \cdot x=a \in R \\
& \Longrightarrow x=\frac{a}{f^{n}} \in R_{f}
\end{aligned}
$$

Proposition 3.14. Let $S \subseteq R$ be multipl. closed; $M, N R$-modules s.t. M is finitely presented. Then:

$$
S^{-1}\left(\operatorname{Hom}_{R}(M, N)\right) \cong \operatorname{Hom}_{S^{-1} R}\left(S^{-1} M, S^{-1} N\right)
$$

$b y \frac{\varphi}{s} \mapsto \frac{S^{-1} \varphi}{s}$.
Proof. Since M is finitely presented, there is an exact sequence

$$
R^{k} \xrightarrow{\alpha} R^{l} \xrightarrow{\beta} M \longrightarrow 0 .
$$

3. Localisation

Setting $m_{i}=\beta\left(e_{i}\right)$ and $v_{j}=\alpha\left(e_{j}^{\prime}\right)$, where the e_{i} are the standard basis vectors in R^{l} and the e_{j}^{\prime} are the standard basis vectors in R^{k}, we get

$$
M=\left\langle m_{1}, \ldots, m_{l}\right\rangle \quad \text { and } \quad \operatorname{ker}(\beta)=\operatorname{Im}(\alpha)=\left\langle v_{1}, \ldots, v_{k}\right\rangle
$$

We consider now the map

$$
\Phi: S^{-1} \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{S^{-1} R}\left(S^{-1} M, S^{-1} N\right): \frac{\varphi}{u} \mapsto \frac{1}{u} \cdot S^{-1} \varphi
$$

This map is obviously well-defined and $S^{-1} R$-linear. We claim, that it is also bijective.
Let us first show that Φ is injective. For this we choose $\frac{\varphi}{u} \in \operatorname{ker}(\Phi)$. Then

$$
0=\Phi\left(\frac{\varphi}{u}\right)=\frac{1}{u} \cdot S^{-1} \varphi
$$

implies that $\frac{\varphi\left(m_{i}\right)}{u}=0$ for all $i=1, \ldots, l$. By definition there exist therefore elements $s_{1}, \ldots, s_{l} \in S$ such that $s_{i} \cdot \varphi\left(m_{i}\right)=0$ for $i=1, \ldots, l$. With $s=s_{1} \cdots s_{l} \in S$ we therefore get

$$
s \cdot \varphi\left(m_{i}\right)=0 \quad \forall i=1, \ldots, l .
$$

Since m_{1}, \ldots, m_{l} is a generating set of M, we deduce, that the morphism $s \cdot \varphi$ is the zero-morphism, and hence

$$
\frac{\varphi}{u}=\frac{s \cdot \varphi}{s \cdot u}=0
$$

But then the Kernel of Φ is zero and Φ is injective.
We next want to show that Φ is surjective. For this we choose some

$$
\psi \in \operatorname{Hom}_{S^{-1} R}\left(S^{-1} M, S^{-1} N\right) .
$$

There are $n_{i} \in N$ and $s_{i} \in S$ such that

$$
\psi\left(\frac{m_{i}}{1}\right)=\frac{n_{i}}{s_{i}}=\frac{n_{i}^{\prime}}{s},
$$

where $s=s_{1} \cdots s_{l}$ and $n_{i}^{\prime}=\frac{n_{i} \cdot s}{s_{i}}$. For arbitrary $a_{1}, \ldots, a_{l} \in R$ we therefore get

$$
\begin{equation*}
s \cdot \psi\left(\frac{\sum_{i=1}^{l} a_{i} m_{i}}{1}\right)=s \sum_{i=1}^{l} a_{i} \cdot \psi\left(\frac{m_{i}}{1}\right)=\frac{\sum_{i=1}^{l} a_{i} \cdot n_{i}^{\prime}}{1} \tag{3.1}
\end{equation*}
$$

Let now $v_{i}=\left(v_{i 1}, \ldots, v_{i l}\right)$. The exactness of the free presentation of M induces

$$
0=(\beta \circ \alpha)\left(e_{i}^{\prime}\right)=\beta\left(v_{i}\right)=\sum_{j=1}^{l} v_{i j} \cdot m_{j} .
$$

3. Localisation

Applying $s \cdot \psi$ we get

$$
0=s \cdot \psi\left(\frac{\sum_{j=1}^{l} v_{i j} \cdot m_{j}}{1}\right)=\frac{\sum_{j=1}^{l} v_{i j} \cdot n_{j}^{\prime}}{1}
$$

This fraction being zero means that there exists a $u_{i} \in S$ such that $u_{i} \cdot \sum_{j=1}^{l} v_{i j} \cdot n_{j}^{\prime}=0$, and setting $u=u_{1} \cdots u_{k}$ we get

$$
u \cdot \sum_{j=1}^{l} v_{i j} \cdot n_{j}^{\prime}=0 .
$$

Since the kernel of β is generated by v_{1}, \ldots, v_{k} we deduce that actually

$$
u \cdot \sum_{j=1}^{l} a_{j} \cdot n_{j}^{\prime}=0 \quad \forall a=\left(a_{1}, \ldots, a_{l}\right) \in \operatorname{ker}(\beta)=\left\langle v_{1}, \ldots, v_{k}\right\rangle .
$$

If now $\sum_{i=1}^{l} a_{i} m_{i}=\sum_{i=1}^{l} b_{i} m_{i}$, then $\left(a_{1}-b_{1}, \ldots, a_{l}-b_{l}\right) \in \operatorname{ker}(\beta)$ and we get

$$
u \cdot \sum_{j=1}^{l} a_{j} \cdot n_{j}^{\prime}=u \cdot \sum_{j=1}^{l} b_{j} \cdot n_{j}^{\prime}
$$

This shows that the map

$$
\varphi: M \longrightarrow N: \sum_{i=1}^{l} a_{i} \cdot m_{i} \mapsto u \cdot \sum_{i=1}^{l} b_{i} \cdot n_{i}^{\prime}
$$

is well-defined, and it is obviously R-linear. By (3.1) we have $u \cdot s \cdot \psi=S^{-1} \varphi$, and we thus get

$$
\psi=\frac{u \cdot s \cdot \psi}{u \cdot s}=\frac{S^{-1} \varphi}{u \cdot s} \in \operatorname{Im}(\Phi)
$$

Hence, the map Φ is surjective.
Corollary 3.15. Let M be finitely presented. Then:

$$
M \text { is projective } \Longleftrightarrow M \text { is locally free }
$$

whereas locally free means M_{P} is free $\forall P \in \operatorname{Spec}(R)$.

Proof.

- " \Longrightarrow ": Assume M is projective
$\Longrightarrow \exists N$, s.t. $M \oplus N \cong \bigoplus_{\lambda \in \Lambda} R$ is free
$\Longrightarrow M_{P} \oplus N_{P} \cong \bigoplus_{\lambda \in \Lambda} R_{P}$
$\Longrightarrow M_{P}$ is projective and by 2.39 we have that M_{P} is free.

3. Localisation

- "œ": We know that if $N \xrightarrow{\varphi} N^{\prime}$, then $N_{P} \xrightarrow{\varphi_{P}} N_{P}^{\prime}$. And since (M_{P} free $\Longrightarrow M_{P}$ projective) and M finitely presented, we have that:

commutes.
$\Longrightarrow\left(\varphi_{*}\right)_{P}$ is surjective $\forall P \in \operatorname{Spec}(R)$
$\Longrightarrow \varphi_{*}$ is surjective
$\Longrightarrow M$ is projective.

Example 3.16. Let $I=\langle 2,1-\sqrt{-5}\rangle \preccurlyeq \mathbb{Z}[\sqrt{-5}]$, then I is projective, but not free.

Proof. Exercise.
Proposition 3.17 (Flatness is a local property). Let M be an R-module, then the following are equivalent:
(a) M is flat as an R-module
(b) M_{P} is flat as R_{P}-module $\forall P \in \operatorname{Spec}(R)$
(c) $M_{\mathfrak{m}}$ is flat as $R_{\mathfrak{m}}$-module $\forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}(R)$

Proof. Exercise.

4. Chain conditions

A). Noetherian and Artinian rings and modules

Definition 4.1. Let R be any ring, M an R-module
(a) M is a noetherian R-module $: \Longleftrightarrow M$ satisfies the ACC (ascending chain condition) on submodules, i.e.:

$$
\forall M_{1} \subseteq M_{2} \subseteq \ldots, M_{i} \leq M: \exists n: M_{i}=M_{n} \forall i \geq n
$$

$\stackrel{!}{\Longleftrightarrow}$ every non-empty set of submodules of M has a maximal element.
(b) M is an artinian R-module $: \Longleftrightarrow M$ satisfies the DCC (descending chain condition) on submodules, i.e.:

$$
\forall M_{1} \supseteq M_{2} \supseteq \ldots, M_{i} \leq M: \exists n: M_{i}=M_{n} \forall i \geq n
$$

$\stackrel{!!}{\Longleftrightarrow}$ Every non-empty set of submodules of M has a minimal element.
(c) R is a noetherian (rsp. artinian) ring $: \Longleftrightarrow R$ is noetherian (rsp. artinian) as an R-module $\Longleftrightarrow R$ satisfies ACC (or DCC) on ideals
(d) A composition series of M is a finite strict chain

$$
0=M_{n}<M_{n-1}<\ldots<M_{0}=M
$$

of submodules of M that cannot be refined. We call n the length of the composition series. Note that in such a chain the quotient of two successive submodules is simple.
(e) We define the length of M

$$
\text { length }(M):=\sup \{n \mid M \text { has a composition series of length } n\} \in \mathbb{N} \cup\{\infty\}
$$

as the maximal length of a composition series, if one exists, respectively ∞ otherwise.

Proof of the equivalence denoted by! and !!: Suppose first that there is a set X of submodules of M without a maximal element, then this can be used to create an ascending chain of submodules which does not become stationary. If conversely every set of submodules of M has a maximal element and $M_{1} \subseteq M_{2} \subseteq \ldots$ is an ascending chain of submodules of M, then $\left\{M_{i} \mid i \geq 1\right\}$ has a maximal element, say M_{n}, and it follows $M_{i}=M_{n}$ for all $i \geq n$. This proves the equivalence denoted by !, and that denoted by !! follows analogously.

4. Chain conditions

Example 4.2.

(a) Fields are noetherian and artinian as rings
(b) V a K-vector space, then:

$$
\operatorname{dim}_{K} V=\operatorname{length}(V)<\infty \Longleftrightarrow V \text { noetherian } \Longleftrightarrow V \text { artinian }
$$

since $M \subsetneq M^{\prime} \Longleftrightarrow \operatorname{dim}(M)<\operatorname{dim}\left(M^{\prime}\right)$
(c) $\mathbb{Z} / n \mathbb{Z}, n>0$ as \mathbb{Z}-module is noetherian and artinian
(d) $K\left[x_{i} \mid i \in \mathbb{N}\right]:=\bigcup_{n=0}^{\infty} K\left[x_{0}, \cdots, x_{n}\right]$ is neither noetherian nor aritinian, since:

$$
\begin{gathered}
\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}, x_{1}\right\rangle \subsetneq\left\langle x_{0}, x_{1}, x_{2}\right\rangle \subsetneq \ldots \\
\left\langle x_{0}\right\rangle \supsetneq\left\langle x_{0}^{2}\right\rangle \supsetneq\left\langle x_{0}^{3}\right\rangle \supsetneq \ldots
\end{gathered}
$$

Proposition 4.3. Let M be an R-module. Then:

$$
M \text { is noetherian } \Longleftrightarrow \text { every submodule of } M \text { is finitely generated }
$$

Proof.

- " \Longrightarrow ": Suppose $N \leq M$ is not finitely generated, choose $0 \neq m_{0} \in N$ and recursively choose $m_{i} \in N \backslash\left\langle m_{0}, \ldots, m_{i-1}\right\rangle$. Then:

$$
\left\langle m_{0}\right\rangle \subsetneq\left\langle m_{0}, m_{1}\right\rangle \subsetneq \ldots \text {. }
$$

- $\Longleftarrow ":$ Let $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$ with $M_{i} \leq M$. Define

$$
\tilde{M}:=\bigcup_{i=1}^{\infty} M_{i} \leq M
$$

Then by assumption $\tilde{M}=\left\langle m_{1}, \ldots, m_{n}\right\rangle$ and thus $\exists j: m_{1}, \ldots, m_{n} \in M_{j}$ and finally: $M_{k}=M_{j}=\tilde{M} \forall k \geq j$.

Example 4.4. Let R be a P.I.D., but not a field. Then R is noetherian, but not artinian. Choose $0 \neq p \in R$, such that p is irreducible (or $p \in R \backslash R^{*}$). Then

$$
\langle p\rangle \supsetneq\left\langle p^{2}\right\rangle \supsetneq\left\langle p^{3}\right\rangle \supsetneq \ldots
$$

In particular: $\mathbb{Z}, K[x], \mathbb{Z}[i], K \llbracket x \rrbracket$ are all noetherian and not artinian.
Proposition 4.5. Let $0 \longrightarrow M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0$ be an exact sequence of R-linear maps. Then:

4. Chain conditions

(a) M is noetherian $\Longleftrightarrow M^{\prime}$ and $M^{\prime \prime}$ are noetherian
(b) M is artinian $\Longleftrightarrow M^{\prime}$ and $M^{\prime \prime}$ are artinian

Proof.
(a)

- " $\Longrightarrow "$: First we show that M^{\prime} is noetherian:

Suppose $M_{0} \subsetneq M_{1} \subsetneq \ldots, M_{i} \leq M^{\prime}$. Then $\alpha\left(M_{0}\right) \subsetneq \alpha\left(M_{1}\right) \subsetneq \ldots$, since M is noetherian.

Now we show that $M^{\prime \prime}$ is noetherian:
Suppose $M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \ldots, M_{i} \leq M^{\prime \prime}$. Then $\beta^{-1}\left(M_{0}\right) \subseteq \beta^{-1}\left(M_{1}\right) \subseteq$ $\beta^{-1}\left(M_{2}\right) \subseteq \ldots$ are submodules of M and by assumption:

$$
\begin{aligned}
& \exists j: \beta^{-1}\left(M_{j}\right)=\beta^{-1}\left(M_{i}\right) \forall i \geq j \\
& \Longrightarrow \beta\left(\beta^{-1}\left(M_{j}\right)\right)=\beta\left(\beta^{-1}\left(M_{i}\right)\right) \forall i \geq j \\
& \Longrightarrow M_{j}=M_{i} \forall i \geq j
\end{aligned}
$$

Thus $M^{\prime \prime}$ is noetherian

- "œ": Let $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots, M_{i} \leq M$. Then by assumption there exists a k, such that $\forall i \geq k$ we have $\alpha^{-1}\left(M_{i}\right)=\alpha^{-1}\left(M_{k}\right)$ and $\beta\left(M_{i}\right)=$ $\beta\left(M_{k}\right)$. Now we need to show that $M_{k}=M_{i} \forall i \geq k$, in particular we need to show "?":

Let $m \in M_{i}$

$$
\begin{aligned}
& \Longrightarrow \beta(m) \in \beta\left(M_{i}\right)=\beta\left(M_{k}\right) \\
& \Longrightarrow \exists \tilde{m} \in M_{k}: \beta(\tilde{m})=\beta(m) \\
& \Longrightarrow \tilde{m}-m \in \operatorname{ker}(\beta)=\operatorname{Im}(\alpha) \text { and } \tilde{m}-m \in M_{i} \text { since } M_{k} \subseteq M_{i} \\
& \Longrightarrow \exists m^{\prime} \in \alpha^{-1}\left(M_{i}\right)=\alpha^{-1}\left(M_{k}\right): \alpha\left(m^{\prime}\right)=\tilde{m}-m \\
& \Longrightarrow m=\underbrace{\tilde{m}}_{\in M_{k}}-\underbrace{\alpha\left(m^{\prime}\right)}_{\in M_{k}} \in M_{k}
\end{aligned}
$$

(b) Analagous

Example 4.6.

4. Chain conditions

(a)

$$
\begin{aligned}
\mathbb{Z}_{p \infty} & :=\left\{\left[\frac{a}{b}\right] \in \mathbb{Q} / \mathbb{Z} \left\lvert\, \operatorname{ord}\left(\left[\frac{a}{b}\right]\right)=p^{n}\right., n \geq 0\right\}, p \in \mathbb{P} \\
& =\left\{\left.\left[\frac{a}{p^{n}}\right] \in \mathbb{Q} / \mathbb{Z} \right\rvert\, a \in\left\{0, \ldots, p^{n}-1\right\}, n \geq 0\right\}
\end{aligned}
$$

is artinian, but not noetherian (the so-called Prüfer group). To prove this, we claim that:

$$
N \nRightarrow \mathbb{Z}_{p^{\infty}} \text { a } \mathbb{Z} \text { - submodule } \Longleftrightarrow \exists n \in \mathbb{N}: N=\left\langle\left[\frac{1}{p^{n}}\right]\right\rangle_{\mathbb{Z}}=: N_{n}
$$

Proof.

- " ": \checkmark
- " $\Longrightarrow ":$ Let $\left[\frac{a}{p^{n}}\right] \in N$, such that $p \nmid a$.

$$
\begin{aligned}
& \Longrightarrow \operatorname{gcd}\left(a, p^{n}\right)=1 \\
& \Longrightarrow \exists b, q \in \mathbb{Z}: 1=b a+q p^{n} \\
& \Longrightarrow\left[\frac{1}{p^{n}}\right]=b\left[\frac{a}{p^{n}}\right]+\underbrace{q\left[\frac{p^{n}}{p^{n}}\right]}_{=0}=b\left[\frac{a}{p^{n}}\right] \in N \\
& \Longrightarrow\left\langle\left[\frac{1}{p^{n}}\right]\right\rangle \subseteq N
\end{aligned}
$$

We now have to consider two cases:
(1) $\exists n$ maximal, such that there exists $\left[\frac{a}{p^{n}}\right] \in N$ with $p \nmid a$. Then

$$
N=\left\langle\left[\frac{1}{p^{n}}\right]\right\rangle_{\mathbb{Z}}
$$

(2) $\left\langle\left[\frac{1}{p^{n}}\right]\right\rangle \subseteq N \forall n \geq 0$. Then:

$$
\mathbb{Z}_{p^{\infty}}=\bigcup_{n=0}^{\infty}\left\langle\left[\frac{1}{p^{n}}\right]\right\rangle \subseteq N \xi_{N \nsubseteq \mathbb{Z}_{p \infty}}
$$

Note.

$$
N_{0} \subsetneq N_{1} \subsetneq N_{2} \subsetneq \cdots \subsetneq \mathbb{Z}_{p \infty}
$$

$\Longrightarrow \mathbb{Z}_{p^{\infty}}$ is artinian (every descending chain is a "subchain" of this) but not noetherian (the chain above does not become stationary).

In particular, $\mathbb{Z}_{p^{\infty}}$ is not finitely generated (by 4.5).

4. Chain conditions

(b) The sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{a \mapsto \frac{a}{1}} \mathbb{Z}_{p} \stackrel{\frac{a}{p^{n}} \mapsto\left[\frac{a}{p^{n}}\right]}{\longrightarrow} \mathbb{Z}_{p^{\infty}} \longrightarrow 0
$$

is exact, so by 4.3, 4.4 and the above example \mathbb{Z}_{p} is neither noetherian nor artinian as a \mathbb{Z}-module

Corollary 4.7. Let M_{1}, \ldots, M_{n}, M be R-modules
(a) M_{1}, \ldots, M_{n} are noetherian (rsp. artinian)

$$
\Longrightarrow M_{1} \oplus \cdots \oplus M_{n} \text { is noeth. (rsp. artinian) }
$$

(b) R is a noetherian (rsp. artinian) ring, M is a finitely gen. R-module $\Longrightarrow M$ is noeth. (rsp. artinian)
(c) R noetherian and M finitely generated, then M is finitely presented.

Proof.
(a) We do an induction on n :

$$
0 \longrightarrow \bigoplus_{i=1}^{n-1} M_{i} \longrightarrow \bigoplus_{i=1}^{n} M_{i} \longrightarrow M_{n} \longrightarrow 0
$$

is exact. Since $\bigoplus_{i=1}^{n-1} M_{i}$ is noeth./artin. by induction and M_{n} is noeth./artin. by assumption, we know by 4.5 that $\bigoplus_{i=1}^{n} M_{i}$ is noetherian (rsp. artinian).
(b) $M=\left\langle m_{1}, \ldots, m_{n}\right\rangle_{R}$. Then:

$$
0 \longrightarrow \operatorname{ker}(\alpha) \longrightarrow R^{n} \xrightarrow{\alpha} M \longrightarrow 0
$$

is exact and by (a) R^{n} is noetherian (rsp. artinian). Thus, by 4.5, M is noetherian (rsp. artinian).
(c) If $M=\left\langle m_{1}, \ldots, m_{n}\right\rangle_{R}$ then the map

$$
\alpha: R^{n} \longrightarrow M: e_{i} \mapsto m_{i}
$$

has a finitely generated kernel, say $\operatorname{ker}(\alpha)=\left\langle k_{1}, \ldots, k_{l}\right\rangle$, since R^{n} is noetherian. Thus the sequence

$$
R^{l} \xrightarrow{\beta} R^{n} \xrightarrow{\alpha} M \longrightarrow 0
$$

with $\beta\left(e_{j}\right)=k_{j}$ is exact and thus a finite presentation of M.

Proposition 4.8. Let R be a noetherian (artinian) ring, $S \subseteq R$ multipl. closed and $I \sharp R$. Then:

4. Chain conditions

(a) R / I is a noetherian (artinian) ring
(b) $S^{-1} R$ is a noetherian (artinian) ring

Proof.
(a) clear, since any ideal $J \preccurlyeq R / I$ corresponds to an ideal $\tilde{J} \preccurlyeq R$ with $I \subseteq J$ and vice versa.
(b) Let $J_{0} \subseteq J_{1} \subseteq J_{2} \subseteq \ldots, J_{i} \Vdash S^{-1} R$.

$$
\begin{aligned}
& \Longrightarrow J_{0}^{c} \subseteq J_{1}^{c} \subseteq J_{2}^{c} \subseteq \ldots, J_{i}^{c} \boxtimes R \\
& \Longrightarrow \exists k: J_{k}^{c}=J_{i}^{c} \forall i \geq k, \text { since } R \text { is noeth. } \\
& \Longrightarrow \underbrace{\left(J_{k}^{c}\right)^{e}}_{=J_{k} \text { by } 3.2}=\underbrace{\left(J_{i}^{c}\right)^{e}}_{=J_{i}} \forall i \geq k \\
& \Longrightarrow J_{k}=J_{i} \forall i \geq k
\end{aligned}
$$

Analogously for artinian.

B). Noetherian Rings

Theorem 4.9 (Hilbert's Basis Theorem).

$$
R \text { noetherian } \Longrightarrow R[x] \text { noetherian }
$$

Proof. Notation: Let $0 \neq f=\sum_{i=1}^{n} f_{i} x^{i} \in R[x], f_{i} \in R, f_{n} \neq 0$. Then let

$$
f_{n}=: \operatorname{lc}(f) \text { the leading coefficent }
$$

Let $J \preccurlyeq R[x], J \neq 0 \Longrightarrow I:=\langle\operatorname{lc}(f) \mid 0 \neq f \in J\rangle_{R} \preccurlyeq R$. So, since R is noetherian, there exist $f_{1}, \ldots, f_{k} \in J$, such that

$$
I=\left\langle\operatorname{lc}\left(f_{1}\right), \cdots, \operatorname{lc}\left(f_{k}\right)\right\rangle_{R}
$$

Our claim is now that

$$
J=\left\langle f_{1}, \cdots, f_{k}\right\rangle_{R[x]}+\left(\left\langle 1, x, x^{2}, \cdots, x^{d-1}\right\rangle_{R} \cap J\right)
$$

as R-modules, where $d=\max \left\{\operatorname{deg}\left(f_{i}\right) \mid i=1 . . k\right\}$

- "?": \checkmark
- " \subseteq ": We have to show that for all $f \in J$ there exists $r \in J$ such that $f-r \in$ $\left\langle f_{1}, \cdots, f_{k}\right\rangle_{R[x]}$ and $\operatorname{deg}(r)<d$. For that we do an induction on $\operatorname{deg}(f)$:

4. Chain conditions

$-\operatorname{deg}(f)=d=0: f=\operatorname{lc}(f) \in I=\left\langle f_{1}=\operatorname{lc}\left(f_{1}\right), \cdots, f_{k}=\operatorname{lc}\left(f_{k}\right)\right\rangle \subseteq$ $\left\langle f_{1}, \cdots, f_{k}\right\rangle_{R[x]} \Longrightarrow r:=0$
$-\operatorname{deg}(f)<d: \Longrightarrow r:=f$
$-\operatorname{deg}(f) \geq d:$ Since $\operatorname{lc}(f) \in I$ there exist $a_{i} \in R$. such that

$$
\operatorname{lc}(f)=\sum_{i=1}^{k} a_{i} \operatorname{lc}\left(f_{i}\right)
$$

Set

$$
f^{\prime}:=f-\sum_{i=1}^{k} a_{i} f_{i} x^{\operatorname{deg}(f)-\operatorname{deg}\left(f_{i}\right)}
$$

Then $\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f)$ and by induction there exists an $r \in J$, such that:

$$
\begin{gathered}
f^{\prime}-r \in\left\langle f_{1}, \cdots, f_{k}\right\rangle_{R[x]}, \operatorname{deg}(r)<\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f) \\
\Longrightarrow f-r=\left(f^{\prime}-r\right)+\sum_{i=1}^{k} a_{i} f_{i} x^{\operatorname{deg}(f)-\operatorname{deg}\left(f_{i}\right)} \in\left\langle f_{1}, \cdots, f_{k}\right\rangle_{R[x]}
\end{gathered}
$$

and $\operatorname{deg}(r)<\operatorname{deg}(f)$.
Thus we get: Since $\left\langle 1, x, x^{2}, x^{3}, \cdots, x^{d-1}\right\rangle$ is a finitely generated R-module and R is noetherian, it is also a noetherian R-module and by 4.5

$$
\underbrace{\left\langle 1, x, x^{2}, x^{3}, \cdots, x^{d-1}\right\rangle_{R} \cap J}_{=\left\langle g_{1}, \cdots, g_{l}\right\rangle_{R} \text { by } 4.3}
$$

is a noetherian R-module and thus finitely generated.

$$
\Longrightarrow J=\left\langle f_{1}, \cdots, f_{k}, g_{1}, \cdots, g_{l}\right\rangle_{R[x]}
$$

is finitely generated and therefore $R[x]$ is noetherian.

Corollary 4.10.

- K field $\Longrightarrow K\left[x_{1}, \ldots, x_{n}\right]$ noetherian
- R noeth. $\Longrightarrow R\left[x_{1}, \ldots, x_{n}\right]$ noetherian

Remark 4.11. Is $K \llbracket x_{1}, \cdots, x_{n} \rrbracket$ noetherian? Yes! Using the Weyerstraß-Division Theorem one reduces the proof to $K \llbracket x_{1}, \cdots, x_{n-1} \rrbracket\left[x_{n}\right]$ being noetherian!

Skipped: 4.12.
Skipped: 4.13.

4. Chain conditions

Skipped: 4.14.

Proposition 4.15.

$$
R \text { noeth. } \Longrightarrow \mathfrak{P}(R) \text { nilpotent } \Longrightarrow \exists n \geq 1: \mathfrak{N}(R)^{n}=0
$$

Proof. R noeth.

$$
\begin{array}{ll}
\Longrightarrow & \mathfrak{P}(R) \text { is finitely generated. } \Longrightarrow \\
\Longrightarrow \exists \alpha_{i}: a_{i}^{\alpha_{i}}=0 \forall i & \mathfrak{N}(R)=\left\langle a_{1}, \cdots, a_{k}\right\rangle_{R} \\
\end{array}
$$

Now let $n:=\max \left\{\alpha_{i}, i=1 . . k\right\}$, then $\left(\sum_{i=1}^{k} b_{i} a_{i}\right)^{k n}=0$.

C). Artinian rings

Definition 4.16 (will be used again from 6.17 on). Let R be a ring, then

$$
\operatorname{dim}(R):=\sup \left\{n \in \mathbb{N} \mid \exists P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{n}, P_{i} \in \operatorname{Spec}(R)\right\}
$$

is the Krull dimension of R.

Example 4.17.

(a) K a field $\Longrightarrow \operatorname{dim}(K)=0$
(b) R a P.I.D., R not a field $\Longrightarrow \operatorname{dim}(R)=1$.

In particular: $\operatorname{dim}(\mathbb{Z})=\operatorname{dim}(K[x])=\operatorname{dim}(K \llbracket x \rrbracket)=\operatorname{dim}(\mathbb{Z}[i])=1$
Proposition 4.18. If $0 \neq R$ is artinian, then:

$$
\operatorname{dim}(R)=0
$$

$(\Longleftrightarrow \mathfrak{m}-\operatorname{Spec}(R)=\operatorname{Spec}(R))$. In particular: $\mathfrak{P}(R)=J(R)$
Proof. $P \in \operatorname{Spec}(R) \Longrightarrow R / P$ is artinian by 4.8. We claim, that R / P is actually a field:
Let $0 \neq \bar{a} \in R / P \stackrel{\text { artin. }}{\Longrightarrow} \exists n:\left\langle\bar{a}^{n}\right\rangle=\left\langle\bar{a}^{n+1}\right\rangle$

$$
\begin{aligned}
& \Longrightarrow \bar{a}^{n} \in\left\langle\bar{a}^{n+1}\right\rangle \\
& \Longrightarrow \exists \bar{b}: \overline{1} \cdot \bar{a}^{n}=\bar{a}^{n}=\bar{b} \bar{a}^{n+1}=\bar{b} \bar{a} \cdot \bar{a}^{n} \\
& \Longrightarrow \overline{1}=\bar{b} \bar{a} \text { since } R / P \text { is an I.D. }
\end{aligned}
$$

Thus R / P is a field.

4. Chain conditions

Proposition 4.19.

$$
R \text { artinian } \Longrightarrow|\mathbf{m}-\operatorname{Spec}(R)|<\infty
$$

Proof. W.l.o.g. $R \neq 0$.

$$
\Longrightarrow M:=\left\{\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k} \mid k \geq 1, \mathfrak{m}_{i} \triangleleft \cdot R\right\} \neq \emptyset
$$

$\xrightarrow{R} \underset{ }{\operatorname{artin}} \exists \mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k} \in M$ minimal with respect to inclusion

$$
\Longrightarrow \forall \mathfrak{m} \triangleleft \cdot R: \mathfrak{m} \supseteq \mathfrak{m} \cdot \mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k}=\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k} \text { (by minimality) }
$$

${ }^{\mathbf{m}} \stackrel{\text { prime }}{\Longrightarrow} \exists i: \boldsymbol{m}_{i} \subseteq \mathbf{m}$

$$
\stackrel{\mathbf{m}_{i} \max }{\Longrightarrow} \mathfrak{m}_{i}=\mathfrak{m}
$$

Proposition 4.20.

$$
R \text { artinian } \Longrightarrow \mathfrak{N}(R)=J(R) \text { is nilpotent }
$$

Proof. We have:

$$
\mathfrak{P}(R) \supseteq \mathfrak{P}(R)^{2} \supseteq \mathfrak{P}(R)^{3} \supseteq \ldots
$$

So, since R is artinian, there exists an n, such that $\mathfrak{\Re ~}(R)^{n}=\mathfrak{R}(R)^{k}=: I \forall k \geq n$.
Suppose $I \neq 0$

$$
\Longrightarrow M:=\{J \preccurlyeq R \mid J \cdot I \neq 0\} \neq \emptyset
$$

since $\mathfrak{P}(R) \in M$.

$$
\begin{aligned}
& \Longrightarrow \exists J_{0} \in M \text { minimal } \\
& \Longrightarrow \exists 0 \neq a \in J_{0}: a \cdot I \neq 0 \\
& \Longrightarrow\langle a\rangle \in M, \text { and since } J_{0} \text { is minimal: } \\
& \Longrightarrow J_{0}=\langle a\rangle
\end{aligned}
$$

Now we get:

$$
\begin{aligned}
& (a \cdot I) \cdot I=a \cdot I^{2} \stackrel{I=I^{2}}{=} a \cdot I \neq 0 \\
\Longrightarrow & a \cdot I \in M, \text { and since } a \cdot I \subseteq\langle a\rangle: \\
\Longrightarrow & \langle a\rangle=a \cdot I \\
\Longrightarrow & \exists b \in I: a=a b=(a b) b=a b^{2}=a b^{k} \forall k \geq 1 \text { by induction } \\
\Longrightarrow & \exists k: a=a \cdot b^{k}=a \cdot 0=0
\end{aligned}
$$

since $b \in I$ and $I \subseteq \mathfrak{R}(R)$.
Lemma 4.21. If there are $\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{k} \triangleleft \cdot R$, such that $\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k}=0$, then:

4. Chain conditions
 R is artinian $\Longleftrightarrow R$ is noetherian

Note. The \boldsymbol{m}_{i} are not necessarily pairwise different!

Proof. We do an induction on k. For $k=1 R$ is a field and the statement holds trivially. So assume the statement is true for $k-1$ and $\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k}=0$.

Let $I_{k-1}=\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k-1}$ and $I_{k}=\mathfrak{m}_{1} \cdot \ldots \cdot \mathfrak{m}_{k}=0$.
$\Longrightarrow I_{k-1}=I_{k-1} / I_{k}$ is an $R / m_{k}-$ vector space
$\stackrel{4.2}{\Longrightarrow}(b)\left(I_{k-1} / I_{k}\right.$ is a noeth. R / \mathfrak{m}_{k} - module $\Longleftrightarrow I_{k-1} / I_{k}$ is an artin. R / \mathfrak{m}_{k} - module $)$
$\Longrightarrow\left(I_{k-1} / I_{k}\right.$ is a noeth. R-module $\Longleftrightarrow I_{k-1} / I_{k}$ is an artin. R-module $)$
$\Longrightarrow\left(I_{k-1}\right.$ is a noeth. R-module $\Longleftrightarrow I_{k-1}$ is an artin. R-module $)$
By 1:1 - correspondence of prime (and maximal) ideals $\bar{m}_{1}, \ldots, \bar{m}_{k-1} \triangleleft \cdot R / I_{k-1}$ and $\bar{m}_{1} \cdot \ldots \cdot \bar{m}_{k-1}=\overline{0}$. Hence by induction R / I_{k-1} is noetherian if and only if it is artinian.
Now consider the exact sequence

$$
0 \longrightarrow I_{k-1} \longleftrightarrow R \longrightarrow R / I_{k-1} \longrightarrow 0
$$

By the considerations above and 4.5 follows the statement.
Theorem 4.22 (Theorem of Hopkins).

$$
R \text { is artinian } \Longleftrightarrow(R \text { is noetherian and } \operatorname{dim}(R)=0)
$$

Proof.

- " $\Longrightarrow "$ By 4.19 $\mathfrak{m}-\operatorname{Spec}(R)=\left\{\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{k}\right\}$
$\xrightarrow{\boxed{4.20}}-n: 0=\mathfrak{R}(R)^{n}=J(R)^{n}=\left(\bigcap_{i=1}^{k} \mathfrak{m}_{i}\right)^{n} \supseteq \bigcap_{i=1}^{k} \mathfrak{m}_{i}^{n} \supseteq \mathfrak{m}_{1}^{n} \cdot \ldots \mathfrak{m}_{k}^{n}$
$\xrightarrow{\boxed{4.21}} R$ is noeth., $\operatorname{dim}(R)=0$ by 4.18
- " " : postponed

Theorem 4.23 (Structure Thm. for artinian rings). If R is artinian, then:

$$
R \cong \bigoplus_{i=1}^{k} R_{i}
$$

4. Chain conditions

with R_{i} local and artinian.
Moreover, the decomposition is unique, i.e.: If $R \cong \bigoplus_{j=1}^{l} S_{j}$ with S_{j} local, artinian, then $l=k$ and $\exists \Pi \in \mathbb{S}_{k}$:

$$
R_{i} \cong S_{\Pi(i)}
$$

Note that the decompositon can actually be described as

$$
R \cong \bigoplus_{\mathfrak{m} \in \mathbf{m}-\operatorname{Spec}(R)} R \mathbf{m}
$$

Proof.
(a) (Existence:)

By $4.19 \mathfrak{m}-\operatorname{Spec}(R)=\left\{\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{k}\right\}$. We claim:

$$
\mathbf{m}_{i}^{n}+\mathbf{m}_{j}^{n}=R \forall n \geq 1, i \neq j
$$

Suppose this is not true. Then there exists $\mathfrak{m} \triangleleft \cdot R$, such that $\mathfrak{m}_{i}^{n}+\mathfrak{m}_{j}^{n} \subseteq \mathfrak{m}$ and since \boldsymbol{m} is prime: $\boldsymbol{m}_{i}, \boldsymbol{m}_{j} \subseteq \mathfrak{m}$ and thus $\boldsymbol{m}_{i}=\boldsymbol{m}=\mathfrak{m}_{j}$ 々

Thus, by 4.20 there exists an n, such that

$$
\begin{aligned}
& 0=J(R)^{n}=\left(\bigcap_{i=1}^{k} \mathfrak{m}_{i}\right)^{n} \supseteq \bigcap_{i=1}^{k}\left(\mathfrak{m}_{i}^{n}\right) \supseteq \mathfrak{m}_{1}^{n} \cdot \ldots \cdot \mathfrak{m}_{k}^{n} \\
\Longrightarrow & \bigcap_{i=1}^{k} \mathfrak{m}_{i}^{n}=\mathfrak{m}_{1}^{n} \cdot \ldots \cdot \mathfrak{m}_{k}^{n}=0 \\
\Longrightarrow & R \cong R / \bigcap_{i=1}^{k} \mathfrak{m}_{i}^{n} \cong \bigoplus_{i=1}^{k} R / \mathbf{m}_{i}^{n} \text { by } 1.12
\end{aligned}
$$

and R / m_{i}^{n} is local and artinian.
Note moreover, that

$$
R_{\mathbf{m}_{i}} \cong \bigoplus_{j=1}^{k}\left(R / \mathfrak{m}_{j}^{n}\right)_{\mathfrak{m}_{i}} \cong R / \mathbf{m}_{i}^{n}
$$

since $\left(R / \mathfrak{m}_{j}^{n}\right)_{\mathfrak{m}_{i}}=0$ if $j \neq i$ and $\left(R / \mathfrak{m}_{j}^{n}\right)_{\mathfrak{m}_{i}} \cong R / \mathfrak{m}_{i}^{n}$ if $j=i$.
(b) (Uniqueness:) Postponed to 5.22

Example 4.24.

4. Chain conditions

(a) $R=K[x] /\left\langle x^{2}\right\rangle, \operatorname{Spec}(R)=\{\langle\bar{x}\rangle\}$. This ring is artinian by Hopkins.
(b) $\operatorname{dim}(R)=0 \nRightarrow R$ is noetherian:

Let $S:=K\left[x_{i} \mid i \in \mathbb{N}\right], I:=\left\langle x_{0}, x_{1}^{2}, x_{2}^{2}, \cdots\right\rangle$ and $R:=S / I$. Claim: $\operatorname{Spec}(R)=$ $\left\{\left\langle\overline{x_{0}}, \overline{x_{1}}, \cdots\right\rangle\right\}$:
If P / I is prime

$$
\begin{aligned}
& \Longrightarrow\left({\overline{x_{i}}}^{i}=\overline{0} \in P / I \Longrightarrow \overline{x_{i}} \in P / I\right) \\
& \Longrightarrow\left\langle\overline{x_{0}}, \overline{x_{1}}, \cdots\right\rangle \subseteq P / I \\
& \Longrightarrow \operatorname{dim}(R)=0
\end{aligned}
$$

But R is not noetherian, since:

$$
\left\langle\overline{x_{0}}\right\rangle \subsetneq\left\langle\overline{x_{0}} \cdot \overline{x_{1}}\right\rangle \subsetneq\left\langle\overline{x_{0}}, \overline{x_{1}}, \overline{x_{2}}\right\rangle \subsetneq \ldots
$$

(c) R noetherian $\nRightarrow \operatorname{dim}(R)<\infty$:
$A:=K\left[x_{i}, 0 \neq i \in \mathbb{N}\right], m_{n}=\frac{n(n+1)}{2}, P_{n}:=\left\langle x_{m_{n}+1}, \cdots, x_{m_{n+1}}\right\rangle \in \operatorname{Spec}(A)$.
$S:=A \backslash \bigcup_{n=0}^{\infty} P_{n}, R:=S^{-1} A$
Then R is noetherian, but $\operatorname{dim}(R)=\infty$.

D). Modules of finite length

Theorem 4.25 (Theorem of Jordan-Hölder). If an R-module M has a composition series, then all composition series have the same length length (M) and every strict chain of submodules can be refined to a composition series.

Proof. We denote by

$$
l(M):=\min \{n \mid M \text { has a composition series of length } n\}
$$

the minimal length of a composition series of M.
We claim that $l(N)<l(M)$ holds for every strict submodule $N<M$. For this we consider a composition series

$$
0=M_{n}<M_{n-1}<\ldots<M_{0}=M
$$

of M of length $l(M)=n$, and we set $N_{i}:=M_{i} \cap N \leq M_{i}$ for $i=0, \ldots, n$. It follows that

$$
\alpha_{i}: N_{i-1} / N_{i}=\left(M_{i-1} \cap N\right) /\left(M_{i} \cap N\right) \longrightarrow M_{i-1} / M_{i}: \bar{x} \mapsto \bar{x}
$$

4. Chain conditions

is a well-defined R-linear map and since M_{i-1} / M_{i} is simple, either $N_{i-1}=N_{i}$ or α_{i} is an isomorphism and N_{i-1} / N_{i} is simple. Omitting superflous terms the N_{i} define thus a composition series of N, which implies that $l(N) \leq n=l(M)$. Suppose now that we have the equality $l(N)=l(M)$, then no N_{i} was superflous and each α_{i} is an isomorphism. We claim that then $M_{i}=N_{i}$ for all $i=0, \ldots, n$, leaving us with the contradition $N=N_{0}=M_{0}=M$. The proof of this claim works by descending induction on i, where $M_{n}=0=N_{n}$ gives the case $i=n$. If we now have $N_{i}=M_{i}$ and

$$
\alpha_{i}: N_{i-1} / N_{i}=N_{i-1} / M_{i} \longrightarrow M_{i-1} / M_{i}: \bar{x} \mapsto \bar{x}
$$

is an isomorphism, then obviously $N_{i-1}=M_{i-1}$, finishing the indcution. We have thus shown that $l(N)<l(M)$.

Suppose now that $M_{k}<M_{k-1}<\ldots<M_{0}$ is any strict chain of submodules in M, then due to

$$
0 \leq l\left(M_{k}\right)<l\left(M_{k-1}\right)<\ldots<l\left(M_{0}\right) \leq l(M)
$$

we must have $k \leq l(M)$. On the other hand, if the chain is a composition series, then $k \geq l(M)$ by the definition of $l(M)$. This shows that all composition series have the same length, which then is length (M) by definition.
It remains to show that any strict chain

$$
M_{k}<M_{k-1}<\ldots<M_{0}
$$

of submodules can be refined to a composition series. We have already seen that $k \leq l(M)=$ length (M). If the chain is not yet a composition series, we can refine it and its length will still be bounded by $l(M)$, so that we can do so only finitely many times. But once it cannot be refined anymore, it is a composition series.

Corollary 4.26. An R-module M has finite length if and only if it is artinian and noetherian.

Proof. If M has finite length then by the Theorem of Jordan-Hölder every chain of submodules of M has at most length length (M). Thus there are no infinite descending or ascending chains of submodules, and M is artinian and noetherian.
Suppose now conversely that M is artinian and noetherian. Then the set of strict submodules of $M_{0}:=M$ has a maximal element M_{1}, since M is noetherian. By maximality the quotient M_{0} / M_{1} is simple. Moreover, M_{1} is noetherian as well and if it is non-zero, we can find in the same way a maximal strict submodule M_{2} of M_{1}. Continuing in this way we construct a descending chain of submodules

$$
M_{0}>M_{1}>M_{2}>\ldots
$$

where every quotient M_{i-1} / M_{i} is simple. Since the module is artinian, the sequence must stop eventually, say with M_{n}, which implies that $M_{n}=0$. But then

$$
0=M_{n}<M_{n-1}<\ldots<M_{0}=M
$$

4. Chain conditions

is a composition series of M, and by the Theorem of Jordan-Hölder M has finite length.

Corollary 4.27. For a ring R the following are equivalent:
(a) R is artinian.
(b) R is noetherian of dimension $\operatorname{dim}(R)=0$.
(c) R has finite length as an R-module.

Proof. This follows immediately from Corollary 4.26 and the Theorem of Hopkins 4.22.

5. Primary decomposition and Krull's Principle Ideal Theorem

A). Primary decomposition

Motivation. in $R=\mathbb{Z}$ we had

$$
z=p_{1}^{n_{1}} \cdot \ldots \cdot p_{r}^{n_{r}}
$$

as prime factorisation, similarly in any U.F.D. How can we generalize this?
The problem is: In general we cannot find such a decomposition for each element. So maybe we could rephrase the above formula to

$$
\langle z\rangle=\left\langle p_{1}^{n_{1}}\right\rangle \cap \cdots \cap\left\langle p_{r}^{n_{r}}\right\rangle
$$

Our hope is, that any ideal $I \preccurlyeq R$ can be written as

$$
I=Q_{1} \cap \cdots \cap Q_{r}
$$

with the Q_{i} somehow "uniquely" determined and a generalized notion of powers of prime ideals.

In a general ring this will fail. In a noetherian ring, however, this actually works! We will find Q_{i}, such that $\sqrt{Q_{i}}$ is a prime ideal. However, Q_{i} will only contain a prime power and uniqueness will only work up to a certain point

Definition 5.1. Let R be a ring, $Q \Vdash R, I \preccurlyeq R$.
(a) Q is primary

$$
\begin{aligned}
& : \Longleftrightarrow Q \neq R \text { and }(a b \in Q \Longrightarrow a \in Q \text { or } b \in \sqrt{Q}) \\
& \Longleftrightarrow Q \neq R \text { and }\left(a b \in Q \Longrightarrow a \in Q \text { or } \exists n: b^{n} \in Q\right) \\
& \Longleftrightarrow R / Q \neq 0 \text { and }(\bar{b} \in R / Q \text { is a zero-divisor } \Longrightarrow \bar{b} \text { is nilpotent })
\end{aligned}
$$

If Q is primary and $P=\sqrt{Q}$, we call Q P-primary.
(b) A primary decomposition (PD) of I is a finite collection of primary ideals Q_{1}, \cdots, Q_{n}, such that

$$
I=Q_{1} \cap \cdots \cap Q_{n}
$$

(c) A primary decomposition is minimal : \Longleftrightarrow
(1) $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}, i \neq j$
(2) $\bigcap_{i \neq j} Q_{j} \nsubseteq Q_{i}, \forall i=1 . . n$

Note. $\sqrt{Q_{i}} \subsetneq \sqrt{Q_{j}}$ is allowed! (see 5.16)
Example 5.2. Let R be a U.F.D. Then $0 \neq Q=\langle q\rangle$ is primary $\Longleftrightarrow \exists p \in R$ prime, $n \geq 1$, such that $q=p^{n} \cdot r, r \in R^{*}$

Proof. We show two directions:
-" " ":

$$
\begin{aligned}
& a b \in Q \Longrightarrow p^{n} \mid a b \\
\Longrightarrow & p^{n} \mid a \text { or } p \mid b \\
\Longrightarrow & a \in Q \text { or } b \in\langle p\rangle=\sqrt{Q}
\end{aligned}
$$

- " $\Longrightarrow ":$ Let $q=p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}$ be the prime factorization of q. Suppose $r>1$ (otherwise we're done).
Then $\underbrace{p_{1}^{\alpha_{1}}}_{=a} \cdot \underbrace{p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}}_{=b} \in Q$, but $a \notin Q, b \notin\left\langle p_{1} \cdot \ldots \cdot p_{r}\right\rangle=\sqrt{Q}$ \&.

In particular:

- R P.I.D $\Longrightarrow\left(Q\right.$ primary $\Longleftrightarrow \exists p$ prime, such that $\left.Q=\left\langle p^{n}\right\rangle\right)$
- R U.F.D., $q=e \cdot p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}$ prime factorisation.

$$
\Longrightarrow\langle q\rangle=\bigcap_{i=1}^{r}\left\langle p_{i}^{\alpha_{i}}\right\rangle \text { is a minimal PD. }
$$

Proposition 5.3. Let R be a ring, $Q \unlhd R$ primary. Then \sqrt{Q} is the smallest prime ideal containing Q

Proof. Suppose $a, b \in \sqrt{Q}$

$$
\begin{aligned}
& \Longrightarrow \exists n: a^{n} b^{n}=(a b)^{n} \in Q \\
& \Longrightarrow a^{n} \in Q \text { or } b^{n} \in \sqrt{Q} \\
& \Longrightarrow a \in \sqrt{Q} \text { or } b \in \sqrt{Q}
\end{aligned}
$$

Thus \sqrt{Q} is prime. Since

$$
\sqrt{Q}=\bigcap_{Q \subseteq P \text { prime }} P
$$

it is also the smallest prime ideal containing Q.

Lemma 5.4. Let R be a ring, $S \subseteq R$ multipl. closed, $Q, Q^{\prime} \unlhd R$ with $Q, Q^{\prime} \subsetneq$ $R ; I_{1}, \cdots, I_{n}, J 太 R$
(a) \sqrt{Q} is a maximal ideal $\Longrightarrow Q$ is \sqrt{Q}-primary
(b) $\mathfrak{m} \triangleleft \cdot R \Longrightarrow \mathfrak{m}^{n}$ is \mathfrak{m}-primary $\forall n \geq 1$
(c) Q is P-primary, $a \in R \backslash Q \Longrightarrow(Q: a)$ is P-primary
(d) Q is P-primary and
(1) $S \cap P=\emptyset \Longrightarrow S^{-1} Q$ is an $S^{-1} P$-primary ideal in $S^{-1} R$ and $S^{-1} Q \cap R=Q$
(2) $S \cap P \neq \emptyset \Longrightarrow S^{-1} Q=S^{-1} R$
(e) Q, Q^{\prime} are P-primary $\Longrightarrow Q \cap Q^{\prime}$ is P-primary.
(f) $\sqrt{I_{1} \cap \cdots \cap I_{n}}=\sqrt{I_{1}} \cap \cdots \cap \sqrt{I_{n}}$
(g) $\left(\bigcap_{i=1}^{n} I_{i}\right): J=\bigcap_{i=1}^{n}\left(I_{i}: J\right)$
(h) $\sqrt{I_{1}+\cdots+I_{n}} \supseteq \sqrt{I_{1}}+\cdots+\sqrt{I_{n}}$

Proof.
(a)

$$
\begin{aligned}
& \qquad \sqrt{Q} / Q=\bigcap_{\bar{P} \in \operatorname{Spec}(R / Q)} \bar{P}=\mathfrak{\Re}(R / Q) \triangleleft \cdot R / Q \\
& \Longrightarrow \operatorname{Spec}(R / Q)=\{\sqrt{Q} / Q\} \\
& \Longrightarrow R / Q \text { is local } \Longrightarrow(R / Q)^{*}=R / Q \backslash \sqrt{Q} / Q \\
& \Longrightarrow \\
& \Longrightarrow
\end{aligned}
$$

(b) $\sqrt{\mathfrak{m}^{n}}=\mathfrak{m} \triangleleft \cdot R$ and by (a) \mathfrak{m}^{n} is m-primary
(c) We have to show: $\sqrt{Q: a}=P$. Since " \supseteq " is clear, we only need to show " \subseteq ":

$$
\begin{aligned}
& b \in Q: a \\
\Longrightarrow & a b \in Q \\
\Longrightarrow & a \in Q \text { or } b \in \sqrt{Q}, \text { but } a \notin Q \\
\Longrightarrow & b \in \sqrt{Q} \\
\Longrightarrow & Q: a \subseteq \sqrt{Q}=P \\
\Longrightarrow & \sqrt{Q: a} \subseteq \sqrt{\sqrt{Q}}=\sqrt{Q}=P
\end{aligned}
$$

Now show that $Q: a$ is primary:

$$
\begin{aligned}
& b c \in Q: a \\
\Longrightarrow & (a b) c \in Q \\
\Longrightarrow & a b \in Q \text { or } c \in \sqrt{Q}=\sqrt{Q: a} \\
\Longrightarrow & b \in Q: a \text { or } c \in \sqrt{Q: a} \Longrightarrow Q: a \text { primary }
\end{aligned}
$$

(d) - $P \cap S \neq \emptyset$:
$\Longrightarrow \exists b \in P \cap S$
$\Longrightarrow \exists n: b^{n} \in Q \cap S$, since $P=\sqrt{Q}$
$\Longrightarrow S^{-1} Q=S^{-1} R$

- $P \cap S=\emptyset$: We have to show $S^{-1} Q \cap R=Q$ (or rather $Q^{\text {ec }}=Q$). Since " \supseteq " holds by 1.10 , we only have to show " \subseteq ":

$$
\begin{aligned}
& \frac{a}{s}=\frac{b}{1} \in S^{-1} Q \cap R ; a \in Q, s \in S, b \in R \\
\Longrightarrow & \exists t \in S: t a=t b s \\
\Longrightarrow & Q \ni t a=b(t s), \text { where } t s \in S, \text { thus } t s \notin P \\
\Longrightarrow & b \in Q \text { since } Q \text { is primary. }
\end{aligned}
$$

Now we need to show $\sqrt{S^{-1} Q}=S^{-1} \sqrt{Q}$:
$-" \supseteq ": b^{n} \in Q \Longrightarrow\left(\frac{b}{s}\right)^{n}=\frac{b^{n}}{s^{n}} \in S^{-1} Q \Longrightarrow \frac{b}{s} \in \sqrt{S^{-1} Q}$

- " \subseteq ":

$$
\begin{aligned}
& \frac{a}{s} \in \sqrt{S^{-1} Q} \Longrightarrow\left(\frac{a}{s}\right)^{n} \in S^{-1} Q \\
\Longrightarrow & \frac{a^{n}}{1}=s^{n}\left(\frac{a}{s}\right)^{n} \in S^{-1} Q \cap R=Q \\
\Longrightarrow & a^{n} \in Q \Longrightarrow a \in \sqrt{Q} \\
\Longrightarrow & \frac{a}{s} \in S^{-1} \sqrt{Q}
\end{aligned}
$$

Now we need to show that $S^{-1} Q$ is primary, so let $\frac{a}{s} \frac{b}{t} \in S^{-1} Q$ and assume $\frac{b}{t} \notin \sqrt{S^{-1} Q}=S^{-1} \sqrt{Q}$. Then $b \notin \sqrt{Q}$.
$a b=s t \frac{a}{s} \frac{b}{t} \in S^{-1} Q \cap R=Q \Longrightarrow a b \in Q$ and since $b \notin \sqrt{Q}$ we know that $a \in Q$ and thus $\frac{a}{s} \in S^{-1} Q$
(e) $\sqrt{Q \cap Q^{\prime}}=\sqrt{Q} \cap \sqrt{Q^{\prime}}=P$ by (f).
$a b \in Q \cap Q^{\prime}$ and $b \notin P \Longrightarrow a \in Q \cap Q^{\prime}$
(f) - (h): Exercise

Example 5.5.

(a) " P prime $\nRightarrow P^{n}$ primary":

Let $R=K[x, y, z] /\left\langle x y-z^{2}\right\rangle, P=\langle\bar{x}, \bar{z}\rangle \in \operatorname{Spec}(R)$
Then $\overline{x y}=\bar{z}^{2} \in P^{2}$, but $\bar{x} \notin P^{2}$ and $\bar{y} \notin P=\sqrt{P^{2}}$.
We see in particular that the condition $(a \cdot b \in Q \Longrightarrow a \in \sqrt{Q}$ or $b \in \sqrt{Q})$ does not imply that Q is primary, since the power of a prime ideal satisfies this condition!
(b) " Q is P-primary $\nRightarrow Q=P^{n "}$:

Let $R=K[x, y], Q=\left\langle x, y^{2}\right\rangle$

$$
\begin{aligned}
& \Longrightarrow\langle x, y\rangle^{2}=\left\langle x^{2}, x y, y^{2}\right\rangle \subsetneq Q \subsetneq\langle x, y\rangle \\
& \Longrightarrow \sqrt{Q}=\langle x, y\rangle \triangleleft \cdot K[x, y] \\
& \Longrightarrow Q \text { is primary and } Q \neq\langle x, y\rangle^{n}
\end{aligned}
$$

Corollary 5.6. Let R be a noetherian ring, $P \in \operatorname{Spec}(R), Q \preccurlyeq R, Q \subsetneq R, \mathfrak{m} \triangleleft \cdot R$
(a) If Q is P-primary then there exists an $n \geq 1$, such that

$$
P^{n} \subseteq Q
$$

(b) The following are equivalent:
(1) Q is m-primary
(2) $\sqrt{Q}=m$
(3) $\exists n \geq 1: \mathfrak{m}^{n} \subseteq Q \subseteq \mathfrak{m}$

Proof. (a) Since R / Q is noetherian, by 4.15

$$
P / Q=\sqrt{Q} / Q=\mathfrak{P}(R / Q)
$$

is nilpotent.
$\Longrightarrow \exists n \geq 1: P^{n}+Q / Q=(P / Q)^{n}=Q / Q$
$\Longrightarrow \exists n: P^{n} \subseteq Q$
(b) •"(1) $\Longrightarrow(2) ": \checkmark$

- "(2) $\Longrightarrow(3) ":$ By $5.4, Q$ is m-primary and thus (3) follows from (a)
- "(3) $\Longrightarrow(1) ":$ Since (3) implies $\sqrt{Q}=\mathfrak{m} \triangleleft \cdot R$, (1) follows from 5.4

Corollary 5.7. Let R be a ring and $I \preccurlyeq R, I \subsetneq R$. If I has a $P D$, it has a minimal $P D$.

Proof. Assume $I=Q_{1} \cap \cdots \cap Q_{n}$ is a PD.

- Step 1: Delete recursively all those Q_{i}, for which $\bigcap_{j \neq i} Q_{j} \subseteq Q_{i}$
- Step 2: Replace the Q_{i} with the same radical by their intersection.

Lemma 5.8. Let R be any ring, $I \preccurlyeq R, a \in R$. If $I: a=I: a^{2}$; then:

$$
I=(I: a) \cap(I+\langle a\rangle)
$$

Proof. " \subseteq " is clear, we only show " \supseteq ":

$$
\begin{aligned}
& r \in(I: a) \cap(I+\langle a\rangle) \\
\Longrightarrow & \exists b \in I, c \in R: r=b+c a \text { and } a r \in I \\
\Longrightarrow & I \ni a r=\underbrace{a b}_{\in I}+c a^{2} \Longrightarrow c a^{2} \in I \\
\Longrightarrow & c \in I: a^{2}=I: a \Longrightarrow c a \in I \Longrightarrow r \in I
\end{aligned}
$$

Theorem 5.9 (Existence of PD in noetherian rings). In a noetherian ring every ideal has a minimal PD.

Proof. Let $M:=\{I \preccurlyeq R \mid I \subsetneq R, I$ has no PD $\}$. Suppose $M \neq \emptyset$. Since R is noetherian, there exists an $I_{0} \in M$ maximal with respect to inclusion. In particular I_{0} is not primary, i.e. there exist $a, b \in R$ such that $a b \in I_{0}$, but $a \notin I_{0}, b^{n} \notin I_{0} \forall n \geq 1$.
Now consider the chain:

$$
I_{0}: b \subseteq I_{0}: b^{2} \subseteq I_{0}: b^{3} \subseteq \ldots
$$

Since R is noetherian, there exists an $n \geq 1$, such that

$$
I_{0}: b^{n}=I_{0}: b^{k}=I_{0}:\left(b^{n}\right)^{2} \forall k \geq n
$$

and by 5.8 we have:

$$
\begin{aligned}
& I_{0}=\underbrace{\left(I_{0}: b^{n}\right)}_{\supsetneq I_{0}, \text { since } a \notin I_{0}} \cap \underbrace{\left(I_{0}+\left\langle b^{n}\right\rangle\right)}_{\supsetneq I_{0} \text {, since } b^{n} \notin I_{0}} \\
\Longrightarrow & \left(I_{0}: b^{n}\right),\left(I_{0}+\left\langle b^{n}\right\rangle\right) \notin M \text { since } I_{0} \text { was maximal } \\
\Longrightarrow & \text { Let } I_{0}: b^{n}=Q_{1} \cap \cdots Q_{k}, I_{0}+\left\langle b^{n}\right\rangle=Q_{1}^{\prime} \cap \cdots \cap Q_{l}^{\prime} \text { be the PD's of these } \\
\Longrightarrow & I_{0}=Q_{1} \cap \cdots \cap Q_{k} \cap Q_{1}^{\prime} \cap \cdots \cap Q_{l}^{\prime} \text { is a PD } 々
\end{aligned}
$$

Example 5.10.

(a) $R:=K[x, y, z], I=\langle x z, y z\rangle=\langle x, y\rangle \cap\langle z\rangle$ is a PD
(b) $R=K[x, y], I=\left\langle x^{2}, x y\right\rangle$ is not radical.

$$
I=\underbrace{\langle x\rangle}_{\text {prime }} \cap \underbrace{\langle x, y\rangle^{2}}_{\text {primary }}=\langle x\rangle \cap \underbrace{\left\langle x^{2}, y\right\rangle}_{\text {primary }}
$$

are two different minimal PD's.
Thus, the PD is not unique!
Definition 5.11. Let R be a ring, $I \preccurlyeq R$
(a)

$$
\begin{aligned}
\operatorname{Ass}(I) & :=\{P \in \operatorname{Spec}(R) \mid \exists a \in R: \sqrt{I: a}=P\} \\
& =\{P \in \operatorname{Spec}(R) \mid \exists \bar{a} \in R / I: P=\sqrt{\operatorname{Ann}(\bar{a})}\}
\end{aligned}
$$

is the set of associated primes of I
(b)

$$
\operatorname{Min}(I):=\{P \in \operatorname{Ass}(I) \mid \nexists Q \in \operatorname{Ass}(I): Q \subsetneq P\}
$$

is the set of minimal primes of I or isolated primes
(c)

$$
\operatorname{Emb}(I):=\operatorname{Ass}(I) \backslash \operatorname{Min}(I)
$$

is the set of embedded primes of I.
Remark 5.12. If $I=Q_{1} \cap \cdots \cap Q_{r}$ is a minimal $P D$ of I, then:

$$
\forall k \exists a_{k} \in\left(\bigcap_{j \neq k} Q_{j}\right) \backslash Q_{k}
$$

And thus:

$$
I: a_{k}=\bigcap_{j=1}^{r} \underbrace{\left(Q_{j}: a_{k}\right)}_{=R \text { for } j \neq k}=\left(Q_{k}: a_{k}\right)
$$

which is $\sqrt{Q_{k}}$-primary.
In particular:

- $\forall k \exists a_{k} \in R: I: a_{k}$ is $\sqrt{Q_{k}}$-primary
- If $a_{k} \notin \sqrt{Q_{k}}$, then $I: a_{k}=Q_{k}$ is a primary component

Theorem 5.13 (First Uniqueness Theorem). Let R be any ring, $I \lessgtr R, I \subsetneq R$ with minimal PD

$$
I=Q_{1} \cap \cdots \cap Q_{r}
$$

Then $\operatorname{Ass}(I)=\left\{\sqrt{Q_{,}}, \cdots, \sqrt{Q_{r}}\right\}$.
In particular: The number of primary components of I and their radicals do not depend on the chosen minimal PD.

Proof.

- " \subseteq ":

$$
\begin{gathered}
\left.\operatorname{Spec}(R) \ni \sqrt{I: a} \stackrel{5.4}{=} \bigcap_{i=1}^{r} \sqrt{Q_{i}: a}, \text { where } \sqrt{Q_{i}: a} \stackrel{5.41}{=} c\right) \begin{cases}R, & a \in Q_{i} \\
\sqrt{Q_{i}}, & a \notin Q_{i}\end{cases} \\
=\bigcap_{a \notin Q_{i}} \sqrt{Q_{i}} \supseteq \prod_{a \notin Q_{i}} \sqrt{Q_{i}} \\
\Longrightarrow \exists i: \sqrt{Q_{i}} \subseteq \sqrt{I: a} \subseteq \sqrt{Q_{i}: a}=\sqrt{Q_{i}} \\
\Longrightarrow \sqrt{I: a}=\sqrt{Q_{i}}
\end{gathered}
$$

- "Э": Let $k \in\{1, \cdots, r\}$.

$$
\begin{aligned}
& \stackrel{5.12}{\Longrightarrow} \exists a \in R:(I: a)=Q_{k}: a \text { which is } \sqrt{Q_{k}} \text {-primary } \\
& \Longrightarrow \sqrt{Q_{k}}=\sqrt{I: a} \in \operatorname{Ass}(I)
\end{aligned}
$$

Corollary 5.14. If $I=Q_{1} \cap \cdots \cap Q_{k}$ minimal PD, then:

$$
\operatorname{Min}(I)=\{P \in \operatorname{Spec}(R) \mid I \subseteq P \text { and } \nexists Q \in \operatorname{Spec}(R): I \subseteq Q \subsetneq P\}
$$

are the minimal ones among the prime ideals containing I.
In particular:
(a) $\mathfrak{P}(R / I)=\bigcap_{P \in \operatorname{Min}(I)}^{P} / I$
(b) R is noetherian $\Longrightarrow R$ has only finitely many minimal prime ideals

Proof.
 $\operatorname{Spec}(R) \backslash \operatorname{Ass}(I): \prod Q_{i} \subseteq I \subseteq P^{\prime} \subsetneq P$

$$
\begin{aligned}
& \Longrightarrow \exists l: Q_{l} \subseteq P^{\prime} \\
& \Longrightarrow \sqrt{Q_{l}} \subseteq \sqrt{P^{\prime}}=P^{\prime} \subsetneq P=\sqrt{Q_{j}} \ddagger
\end{aligned}
$$

- " \supseteq :" Let $P \in \operatorname{Spec}(R)$ be in the right hand set. By the argument above there exists an l, such that $P \supseteq \sqrt{Q_{l}} \supseteq Q_{l} \supseteq I$ and since P is minimal we get $P=\sqrt{Q_{l}}$

Corollary 5.15. If $I=Q_{1} \cap \cdots \cap Q_{k}$ minimal $P D$, then

$$
\bigcup_{i=1}^{k} \sqrt{Q_{i}}=\{a \in R \mid \bar{a} \in R / I \text { is a zero-divisor }\}=\{a \in R \mid I: a \supsetneq I\}
$$

In particular: If $I=0$, then

$$
\bigcup_{i=1}^{r} \sqrt{Q_{i}}=\{a \in R \mid a \text { is a zero-divisor }\}
$$

Proof. We show

$$
\{a \in R \mid \bar{a} \in R / I \text { is a zero-divisor }\}=\bigcup_{a \notin I} \sqrt{I: a}
$$

- " \subseteq ": Let b in the set on the left hand side. Then there exists an $a \notin I$, such that $a b \in I$. Thus $b \in I: a \subseteq \sqrt{I: a}$ and b is in the set on the right hand side.
- "〇": Let b be in the set on the r.h.s.

$$
\begin{aligned}
& \Longrightarrow \exists a \notin I: b \in \sqrt{I: a} \\
& \Longrightarrow \exists m: b^{m} \in I: a \\
& \Longrightarrow b^{m} a \in I \\
& \Longrightarrow \text { choose } m \text { minimal }(m \geq 1, \text { since otherwise } a \in I) \\
& \Longrightarrow b(\underbrace{b^{m-1} a}_{\notin I}) \in I
\end{aligned}
$$

and thus \bar{b} is a zero-divisor in R / I

Now we claim: $\bigcup_{a \notin I} \sqrt{I: a}=\bigcup_{i=1}^{r} \sqrt{Q_{i}}$:

- " \supseteq ": By 5.13
- " \subseteq ": Let $a \notin I=Q_{1} \cap \cdots \cap Q_{k} \Longrightarrow \exists l$ s.t. $a \notin Q_{l}$

$$
\Longrightarrow \sqrt{I: a}=\bigcap_{j=1}^{k} \sqrt{Q_{j}: a} \subseteq \sqrt{Q_{l}: a} \stackrel{5.4}{=} \sqrt{Q_{l}}
$$

Example 5.16. Let $R=K[x, y], I=\left\langle x^{2}, x y\right\rangle$

$$
I=\underbrace{\langle x\rangle}_{\sqrt{\langle x\rangle}=\langle x\rangle} \cap \underbrace{\left\langle x^{2}, y\right\rangle}_{\sqrt{\left\langle x^{2}, y\right\rangle}=\langle x, y\rangle}
$$

is a minimal PD. Thus:

- $\operatorname{Ass}(I)=\{\langle x\rangle,\langle x, y\rangle\}$
- $\operatorname{Min}(I)=\{\langle x\rangle\}$
- $\operatorname{Emb}(I)=\{\langle x, y\rangle\}$

Proposition 5.17 (PD commutes with localisation). Let R be a ring, $S \subseteq R$ multipl. closed, $I \preccurlyeq R, I \neq R$ with minimal $P D I=Q_{1} \cap \cdots \cap Q_{r}$. Then:

$$
S^{-1} I=\bigcap_{Q_{i} \cap S=\emptyset} S^{-1} Q_{i} \text { and } S^{-1} I \cap R=\bigcap_{Q_{i} \cap S=\emptyset} Q_{i}
$$

are minimal PD's.

Proof.

$$
S^{-1} I \stackrel{\sqrt[3.7]{=}}{i=1} \bigcap^{r} S^{-1} Q_{i}=\bigcap_{Q_{i} \cap S=\emptyset} S^{-1} Q_{i}
$$

Note.

$$
S \cap Q_{i}=\emptyset \Longleftrightarrow S \cap \sqrt{Q_{i}}=\emptyset
$$

since $a \in S \cap \sqrt{Q_{i}} \Longrightarrow a^{n} \in S \cap Q_{i}$.
Thus, by 5.4, $S^{-1} Q_{i}$ is primary, if $S \cap Q_{i}=\emptyset$
Moreover $I=\bigcap_{i=1}^{r} Q_{i}$ is a minimal PD, i.e. the $\sqrt{Q_{i}}$ are pairwise different. and so the $S^{-1} \sqrt{Q_{i}}$ are pairwise different (if $\sqrt{Q_{i}} \cap S=\emptyset$).

Now suppose $\bigcap_{j \neq i} S^{-1} Q_{j} \subseteq S^{-1} Q_{i}$ with $Q_{i} \cap S=\emptyset$. Then:

$$
\bigcap_{j \neq i} Q_{j} \subseteq\left(\bigcap_{i \neq j} S^{-1} Q_{j}\right) \cap R \subseteq S^{-1} Q_{i} \cap R=Q_{i} \text { 亿 }
$$

And we have:

$$
\begin{aligned}
R \cap S^{-1} I & =R \cap \bigcap_{Q_{j} \cap S=\emptyset} S^{-1} Q_{j} \\
& =\bigcap_{Q_{j} \cap S=\emptyset} \underbrace{\left(R \cap S^{-1} Q_{j}\right)}_{=Q_{j}} \\
& \stackrel{5.4}{=} \bigcap_{Q_{j} \cap S=\emptyset} Q_{j}
\end{aligned}
$$

Definition 5.18. Let R be a ring, $I \preccurlyeq R, I \neq R, \Sigma \subseteq \operatorname{Ass}(I)$. Then:

$$
\Sigma \text { is called isolated }: \Longleftrightarrow\left(\operatorname{Ass}(I) \ni P^{\prime} \subseteq P \in \Sigma \Longrightarrow P^{\prime} \in \Sigma\right)
$$

E.g.: If $P \in \operatorname{Ass}(I)$, then

$$
\Sigma_{P}:=\left\{P^{\prime} \in \operatorname{Ass}(I) \mid P^{\prime} \subseteq P\right\}
$$

is obviously isolated and

$$
P \in \operatorname{Min}(I) \Longleftrightarrow \Sigma_{P}=\{P\}
$$

Corollary 5.19. Let R be a ring, $I \preccurlyeq R, I \neq R$ with minimal $P D I=Q_{1} \cap \cdots \cap Q_{r}$ and $\Sigma \subseteq \operatorname{Ass}(I)$ isolated. Then:

$$
S_{\Sigma}:=R \backslash \bigcup_{P \in \Sigma} P
$$

is multipl. closed and

$$
S_{\Sigma}^{-1} I \cap R=\bigcap_{\sqrt{Q_{i} \in \Sigma}} Q_{i}
$$

In particular: $\bigcap_{\sqrt{Q_{i}} \in \Sigma} Q_{i}$ is independent of the chosen $P D$
Proof.

$$
\begin{aligned}
& S_{\Sigma} \cap Q_{i}=\emptyset \\
& \Longleftrightarrow S_{\Sigma} \cap \sqrt{Q_{i}}=\emptyset \\
& \Longleftrightarrow \sqrt{Q_{i}} \subseteq \bigcup_{P \in \Sigma} P \\
&{ }^{1.17} \\
& \Longleftrightarrow P \in \Sigma: \sqrt{Q_{i}} \subseteq P \\
& \Longleftrightarrow \sqrt{Q_{i}} \in \Sigma
\end{aligned}
$$

The rest follows from 5.17
Corollary 5.20 (Second Uniqueness Theorem). The isolated (minimal) primary components of a minimal PD are independent of the chosen PD

Proof 5.21 (of 4.22, " "). Show: R noeth and $\operatorname{dim} R=0 \Longrightarrow R$ is artinian.

$$
\begin{aligned}
& \operatorname{dim} R=0 \\
\Longrightarrow & \mathfrak{m}-\operatorname{Spec}(R)=\operatorname{Spec}(R)=\{P \mid P \text { minimal }\} \\
& \stackrel{5.14}{=}\left\{\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{n}\right\} \text { finite } \\
\Longrightarrow & \mathfrak{P}(R)=\bigcap_{i=1}^{n} \mathfrak{m}_{i} \\
& \stackrel{4.15}{\Longrightarrow} \\
& m: 0=\mathfrak{N}(R)^{m}=\mathfrak{m}_{1}^{m} \cdot \ldots \cdot \mathfrak{m}_{n}^{m} \\
\stackrel{4.21}{\Longrightarrow} & R \text { artinian }
\end{aligned}
$$

$$
R \xrightarrow[\cong]{\stackrel{\psi}{\cong}} \bigoplus_{i=1}^{r} R_{i}
$$

We intend to show: $R_{i} \cong R / I_{i}$, where I_{1}, \cdots, I_{r} are the isolated (minimal) primary components of $\langle 0\rangle$.

Consider $\varphi_{k}: R \xrightarrow{\psi} \bigoplus_{i=1}^{r} R_{i} \xrightarrow{\text { proj. }} R_{k}$, where $\operatorname{ker}\left(\varphi_{k}\right)=: I_{k}$. Then:
$\Longrightarrow R_{k} \cong R / I_{k}$ local, artinian ring
$\Longrightarrow \exists_{1} \mathfrak{m}_{k} \triangleleft \cdot R: I_{k} \subseteq \mathfrak{m}_{k}$ and $\exists n_{k}: \mathfrak{m}_{k}^{n_{k}} \subseteq I_{k}$
$\stackrel{\underline{\underline{5.6}}}{ } I_{k}$ is \mathfrak{m}_{k}-primary

$$
\Longrightarrow\langle 0\rangle=\operatorname{ker}(\psi)=\bigcap_{k=1}^{r} I_{k}
$$

is a PD
By the C.R.T. (1.12) I_{i}, I_{j} are pairwise coprime $\forall i \neq j$. Thus $\mathfrak{m}_{i} \neq \mathfrak{m}_{j} \forall i \neq j$. Thus the radicals of the I_{j} are pairwise different.
Suppose now that some I_{j} was redundant in the PD of 0 . Then the map

$$
\alpha: R \longrightarrow \bigoplus_{i \neq j} R_{i}: a \mapsto\left(\varphi_{i}(a) \mid i \neq j\right)
$$

would be surjective with kernel $\bigcap_{i \neq j} I_{i}=\langle 0\rangle$, i.e. it would be an isomorphism. In turn also the map $\alpha \circ \psi^{-1}$ would be an isomorphism which would map the j-th unit vector $e_{j} \in \bigoplus_{i=1}^{r} R_{i}$ to zero. This is clearly impossible.
Thus the PD is minimal and all primary components are actually isolated, i.e. minimal and by $5.20 r, I_{1}, \cdots, I_{r}$ only depend on R and thus R_{1}, \cdots, R_{r} only depend on R.

B). Krull's Principal Ideal Theorem

Definition 5.23. Let R be a ring, $P \in \operatorname{Spec}(R), I \preccurlyeq R, n \geq 1 ; a_{1}, \ldots, a_{k} \in P$
(a)

$$
\begin{aligned}
P^{(n)} & :=P^{n} \cdot R_{P} \cap R=\left(P^{n}\right)^{e c} \\
& =\left\{a \in R \mid \exists b \in R \backslash P: a b \in P^{n}\right\}
\end{aligned}
$$

is the n-th symbolic power of P.
Note.

- $P^{n} \subseteq P^{(n)} \subseteq P$. Thus $P^{(1)}=P$ and $\sqrt{P^{(n)}}=P$
- $\left(P^{(n)}\right)^{e}=\left(P^{n}\right)^{e c e}=\left(P^{n}\right)^{e}$
(b) P is minimal over a_{1}, \ldots, a_{k}

$$
: \Longleftrightarrow \nexists Q \in \operatorname{Spec}(R): a_{1}, \ldots, a_{k} \in Q \subsetneq P
$$

(c)

$$
\operatorname{codim}(P):=\operatorname{ht}(P):=\sup \left\{m \mid \exists P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{m} \subseteq P, P_{i} \in \operatorname{Spec}(R)\right\}
$$

is the codimension or height of P.
(d)

$$
\operatorname{codim}(I):=\operatorname{ht}(I):=\min \{\operatorname{codim}(P) \mid I \subseteq P \in \operatorname{Spec}(R)\}
$$

is the codimension or height of I.
Proposition 5.24. Let R be any ring, $P \in \operatorname{Spec}(R), n \geq 1$

$$
\Longrightarrow P^{(n)} \text { is P-primary }
$$

Proof. Exercise.
Theorem 5.25 (Krull's Principal Ideal Theorem). Let R be a noeth. ring, $P \in$ $\operatorname{Spec}(R)$ minimal over $a \in R \backslash R^{*}$. Then:

$$
\operatorname{codim}(P) \leq 1
$$

Proof. Suppose $Q^{\prime} \subseteq Q \subsetneq P$ are prime ideals. We need to show. $Q=Q^{\prime}$.
Localising with respect to P and dividing by Q^{\prime} we may assume w.l.o.g. (by 1:1correspondence of prime ideals):

- R local, $P=J(R) \triangleleft \cdot R$
- $Q^{\prime}=0$
- R is an I.D.

The idea is to show $Q=0$ by showing $Q^{(k)}=Q^{(k+1)}$, then from this $\left(Q \cdot R_{Q}\right)^{k}=$ $\left(Q \cdot R_{Q}\right)^{k+1}$ and then using Nakayama's lemma. Since $Q^{(k+1)} \subseteq Q^{(k)}$ is obvious, we only need to show the other inclusion:
P is minimal over a, so we get:

$$
\Longrightarrow \operatorname{dim}(R /\langle a\rangle)=0
$$

$\stackrel{4.22}{\Longrightarrow} R /\langle a\rangle$ is artinian, since it is noeth. by assumption
$\Longrightarrow Q^{(k)}+\langle a\rangle=Q^{(k+1)}+\langle a\rangle$ for some k
(just consider: $Q+\langle a\rangle \supseteq Q^{(2)}+\langle a\rangle \supseteq \ldots$ in $R /\langle a\rangle$)
$\Longrightarrow Q^{(k)} \subseteq Q^{(k+1)}+\langle a\rangle$
Now let $y=x+a t$ with $y \in Q^{(k)}, x \in Q^{(k+1)}, t \in R$.
$\Longrightarrow a t=y-x \in Q^{(k)}$, and since P is minimal: $a \notin Q=\sqrt{Q^{(k)}}$. As $Q^{(k)}$ is primary, we get $t \in Q^{(k)}$ by 5.24 .

$$
\Longrightarrow Q^{(k)} \subseteq Q^{(k+1)}+\underbrace{a}_{\in P} \cdot Q^{(k)} \subseteq Q^{(k+1)}+P Q^{(k)} \subseteq Q^{(k)}
$$

Thus we have $Q^{(k+1)}+P \cdot Q^{(k)}=Q^{(k)}$ and by 2.11 we get:

$$
Q^{(k)}=Q^{(k+1)}
$$

Thus we can derive:

$$
\begin{aligned}
\left(Q \cdot R_{Q}\right)^{k} & =Q^{k} R_{Q}=Q^{(k)} \cdot R_{Q} \text { by definition, as }\left(P^{n}\right)^{e}=\left(P^{n}\right)^{e c e}=\left(P^{(n)}\right)^{e} \\
& =Q^{(k+1)} \cdot R_{Q}=Q^{k+1} \cdot R_{Q}=\left(Q \cdot R_{Q}\right)^{k+1} \\
& =\left(Q \cdot R_{Q}\right)^{k} \cdot\left(Q \cdot R_{Q}\right) \\
& \underline{\Longrightarrow 2.9} \\
& \left(Q \cdot R_{Q}\right)^{k}=0 \\
& \Longrightarrow Q \cdot R_{Q} \text { is nilpotent } \\
& \Longrightarrow Q
\end{aligned}
$$

Note. NAK can only be applied, since R is noetherian and thus every ideal is finitely generated!

Corollary 5.26. R noetherian, $P_{1}, P_{2}, P_{3} \in \operatorname{Spec}(R), P_{1} \subsetneq P_{2} \subsetneq P_{3} ; a \in P_{3} \backslash P_{2}$. Then

$$
\exists P \in \operatorname{Spec}(R): a \in P \text { and } P_{1} \subsetneq P \subsetneq P_{3}
$$

Proof. codim $\left(P_{3} / P_{1}\right) \geq 2$ by assumption.
By 5.25 P_{3} / P_{1} is not minimal over $\bar{a} \in P_{3} / P_{1}$ and thus there exists a $P \in \operatorname{Spec}(R)$, such that $\bar{a} \in P / P_{1}$ and $P / P_{1} \subsetneq P_{3} / P_{1}$.
Corollary 5.27. Let R be a noeth. ring, $P \in \operatorname{Spec}(R)$ minimal over $a_{1}, \ldots, a_{r} \in R \backslash R^{*}$. Then:

$$
\operatorname{codim}(P) \leq r
$$

Proof. We do an induction on r. For $r=1$ see 5.25. Now let $r>1$:
Let $P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{r^{\prime}}=P$. By 5.26 and induction we may assume that $a_{r} \in P_{1}$.
Thus $P /\left\langle a_{r}\right\rangle$ is minimal over $\overline{a_{1}}, \ldots, \overline{a_{r-1}} \in R /\left\langle a_{r}\right\rangle$ and

$$
P_{1} /\left\langle a_{r}\right\rangle \subsetneq P_{2} /\left\langle a_{r}\right\rangle \subsetneq \ldots \subsetneq P_{r^{\prime}} /\left\langle a_{r}\right\rangle=P /\left\langle a_{r}\right\rangle
$$

Thus $r^{\prime}-1 \leq \operatorname{codim}\left(P /\left\langle a_{r}\right\rangle\right) \stackrel{\text { Ind. }}{\leq} r-1$, and we get

$$
r \geq \sup \left\{r^{\prime} \mid \exists P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{r^{\prime}}=P, P_{i} \text { prime }\right\}=\operatorname{codim}(P)
$$

Corollary 5.28. Let R be a noeth. ring, $a \in R \backslash R^{*}$ not a zero-divisor and $P \in \operatorname{Spec}(R)$ minimal over a. Then

$$
\operatorname{codim}(P)=1
$$

Proof. $\operatorname{Ass}(0)=\left\{P_{1}, \ldots, P_{n}\right\} \Longrightarrow a \notin P_{i} \forall i$ by 5.15.
Now let $\operatorname{Ass}(0) \supseteq \operatorname{Min}(0)=\left\{P_{1}, \ldots, P_{m}\right\} \stackrel{5.14}{\Longrightarrow} \exists i \in\{1 . . n\}$:

$$
\underbrace{P_{i}}_{a \notin} \subseteq \underbrace{P}_{a \in}
$$

$\Longrightarrow P_{i} \subsetneq P \Longrightarrow \operatorname{codim}(P) \geq 1$ and by the KPIT follows equality.
Corollary 5.29. Let R be a noeth I.D. Then R is a U.F.D. \Longleftrightarrow all prime ideals of codimension 1 are principal

5. Primary decomposition and Krull's Principle Ideal Theorem

Proof. We show two directions:

- " $\Longrightarrow ":$ Let $\operatorname{codim}(P)=1$

$$
\begin{aligned}
& \Longrightarrow \exists 0 \neq f=f_{1}^{\alpha_{1}} \cdot \ldots \cdot f_{r}^{\alpha_{r}} \in P \text { prime fact. } \\
& \Longrightarrow \exists i: f_{i} \in P \text { since } P \text { is prime } \\
& \Longrightarrow 0 \subsetneq\left\langle f_{i}\right\rangle \subseteq P \\
& \Longrightarrow P=\left\langle f_{i}\right\rangle \text { since } \operatorname{codim}(P)=1
\end{aligned}
$$

- " ": First we show, that if $0 \neq f \in R \backslash R^{*} \Longrightarrow f$ is a product of irred. elements:

Assume that

$$
M:=\{\langle f\rangle \mid f \text { is not a product of irred. elements }\} \neq \emptyset
$$

$\Longrightarrow \exists\langle f\rangle \in M$ maximal with respect to inclusion, since R is noeth.
$\Longrightarrow f$ is not irred.
$\Longrightarrow f=g h ; g, h \notin R^{*}$
$\Longrightarrow\langle g\rangle \supsetneq\langle f\rangle \subsetneq\langle h\rangle$
$\Longrightarrow\langle g\rangle,\langle h\rangle \notin M$ by choice of f
$\Longrightarrow g, h$ are products of irred. elements
$\Longrightarrow f$ is a product of irred. elements $\{$
Now we need to show: f irreducible $\Longrightarrow f$ prime:
Choose: $P \in \operatorname{Spec}(R)$ minimal over f (this exists, since R is noetherian).

$$
\begin{aligned}
& \stackrel{5.28}{\Longrightarrow} \operatorname{codim}(P)=1 \\
& \Longrightarrow P \text { is principal by assumption } \\
& \Longrightarrow P=\langle p\rangle \text { for some } p \text { prime element } \\
& \Longrightarrow \exists a \in R: f=a p, \text { since } f \in P \\
& \Longrightarrow a \in R^{*}, \text { since } f \text { is irred. } \\
& \Longrightarrow P=\langle f\rangle \Longrightarrow f \text { prime }
\end{aligned}
$$

Corollary 5.30 (Compare with Example 4.24 c$)$). Let ($R, \mathrm{~m}$) be a local noeth. ring, then:

$$
\operatorname{dim}(R) \leq \operatorname{dim}_{R / \mathfrak{m}} \mathfrak{m} / \mathfrak{m}^{2}<\infty
$$

5. Primary decomposition and Krull's Principle Ideal Theorem

Proof.
R noeth.

$$
\begin{aligned}
& \stackrel{N A K}{\Longrightarrow} \mathfrak{m}=\left\langle a_{1}, \cdots, a_{r}\right\rangle \text { for some } a_{i} \in \mathfrak{m} \text { and } r=\operatorname{dim}_{R / \mathfrak{m}} \mathfrak{m} / \mathfrak{m}^{2} \\
& \Longrightarrow \mathfrak{m} \text { is minimal over } a_{1}, \cdots, a_{r} \\
& \Longrightarrow \operatorname{dim}(R)=\operatorname{codim}(R) \leq r
\end{aligned}
$$

Remark 5.31. (a) If $P \in \operatorname{Spec}(R)$, we get
(1) $\operatorname{codim}(P)+\operatorname{dim}(R / P) \leq \operatorname{dim}(R)$
(2) $\operatorname{codim}(P)=\operatorname{dim}\left(R_{P}\right)$
(b) We call a local noetherian ring (R, \mathbf{m}) regular if $\operatorname{dim}(R)=\operatorname{dim}_{R / \mathbf{m}} \mathbf{m} / \mathbf{m}^{2}$.

Note, if R is the local ring of an algebraic variety at a point p, then $\mathfrak{m} / \mathfrak{m}^{2}$ is the dual of the tangent space of the variety at the point p and the above equality means that the point is a smooth or regular point of the variety!

Corollary 5.32. Let (R, \mathbf{m}) be a local, noetherian ring, $a \in R \backslash R^{*}$.
(a) $\operatorname{dim}(R /\langle a\rangle) \geq \operatorname{dim}(R)-1$.
(b) If a is not a zero-divisor, then $\operatorname{dim}(R /\langle a\rangle)=\operatorname{dim}(R)-1$.

Proof. We show two inequalities:

- " \geq ": Choose a chain $P_{0} \subsetneq P_{1} \subsetneq . . \subsetneq P_{d}$ of primes in R with $d=\operatorname{dim}(R)$, such that $a \in P_{i}$ with minimal i. Note, for this we need that R is local, so that a is contained in every maximal ideal! Otherwise possibly no chain of length $\operatorname{dim}(R)$ would contain a prime ideal which contains a !

By 5.26 we get $i \leq 1$
$\Longrightarrow P_{1} /\langle a\rangle \subsetneq \ldots \subsetneq P_{d} /\langle a\rangle$ are primes in $R /\langle a\rangle$. Thus:
$\operatorname{dim}(R /\langle a\rangle) \geq d-1=\operatorname{dim}(R)-1$.

- " \leq ": Choose $\langle a\rangle \subseteq P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{r}$ a chain of prime ideals in R of maximal length, such that $a \in P_{0}$.
$\Longrightarrow \operatorname{dim}(R /\langle a\rangle)=r=\operatorname{dim}\left(R / P_{0}\right) \stackrel{5.31}{\leq} \operatorname{dim}(R)-\operatorname{codim}\left(P_{0}\right) \stackrel{5.28}{=} \operatorname{dim}(R)-1$
Note, in order to apply Corollary 5.28 , we need that a is not a zero-divisor.

Corollary 5.33.

$$
\operatorname{dim}\left(K\left[x_{1}, \cdots, x_{n}\right]_{\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle}\right)=n
$$

In particular, $K\left[x_{1}, \ldots, x_{n}\right]_{\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle}$ is a regular ring.
Proof. $5.32+$ Induction.

Geometrical interpretation 5.34.

Consider $0 \subsetneq\langle x\rangle \subsetneq\langle x, y\rangle \subsetneq K[x, y]$ and $R=K[x, y, z] /\langle x z, y z\rangle, P=\langle\bar{x}, \bar{y}, \overline{z-1}\rangle$.
Then:

$$
\begin{aligned}
\operatorname{codim} P & =\operatorname{dim} R_{P} \\
& =\operatorname{dim}(K[x, y, z] /\langle x z, y z\rangle)\langle\bar{x}, \bar{y}, \overline{z-1}\rangle \\
& =\operatorname{dim}(K[x, y, z] /\langle x, y\rangle)_{\langle\bar{x}, \bar{y}, \overline{z-1}\rangle} \\
& =\operatorname{dim} K[z]_{\langle\overline{z-1}\rangle}=1
\end{aligned}
$$

Since $\operatorname{dim} R / P=0 \Longrightarrow \operatorname{codim} P+\operatorname{dim}(R / P)=1<\operatorname{dim} R=2$.
Proposition 5.35. A regular local ring (R, \mathbf{m}) is an integral domain.
Proof. We prove the statement by induction on $d=\operatorname{dim}(R)$. If $d=0$ then by Nakayama's Lemma m must be zero, since $m / m^{2}=0$.
Let thus $d>0$. Since R is noetherian there are only finitely many minimal prime ideals $\operatorname{Min}(0)=\left\{P_{1}, \ldots, P_{k}\right\}$. By prime avoidance 1.17 there is an

$$
x \in \mathfrak{m} \backslash\left(\mathfrak{m}^{2} \cup P_{1} \cup \ldots \cup P_{k}\right) .
$$

In the following sequence of inequalities we make use of the following identifications $R /\langle x\rangle / \mathfrak{m} /\langle x\rangle \cong R /\langle x\rangle$ and $\mathfrak{m} /\langle x\rangle / \mathfrak{m}^{2}+\langle x\rangle /\langle x\rangle \cong \mathfrak{m} / \mathfrak{m}^{2}+\langle x\rangle$ in order to determine that $R /\langle x\rangle$ is regular:

$$
\begin{aligned}
& \operatorname{dim}_{R / \mathbf{m}}\left(\mathfrak{m} / \mathbf{m}^{2}+\langle x\rangle\right)=\operatorname{dim}_{R / \mathbf{m}}\left(\mathfrak{m} / \mathbf{m}^{2}\right)-1=\operatorname{dim}(R)-1 \\
& \frac{5.32}{\leq} \operatorname{dim}(R /\langle x\rangle) \stackrel{5.30}{\leq} \operatorname{dim}_{R / \mathbf{m}}\left(\mathbf{m} / \mathbf{m}^{2}+\langle x\rangle\right) .
\end{aligned}
$$

Thus the inequalities are indeed equalities and $R /\langle x\rangle$ is regular.
By induction $R /\langle x\rangle$ is then an integral domain and thus $\langle x\rangle$ is a prime ideal. It follows that some of the minimal prime ideals P_{i} is contained in $\langle x\rangle$, and since x is not contained in any minimal prime the inclusion is strict.
We now want to show that this P_{i} is indeed the zero ideal and therefore R is an integral domain. To this end we consider an arbitrary element $y \in P_{i} \subset\langle x\rangle$. There must be a $z \in R$ such that $y=x \cdot z$. Since P_{i} is prime and $x \notin P_{i}$ it follows that $z \in P_{i}$, and thus

$$
y=x \cdot z \in x \cdot P_{i} \subseteq \mathfrak{m} \cdot P_{i} .
$$

We have thus shown that

$$
P_{i} \subseteq \mathfrak{m} \cdot P_{i},
$$

which by Nakayama's Lemma implies that $P_{i}=0$. This finishes the proof.

6. Integral Ring Extensions

A). Basics

Motivation. Let $K \subseteq K^{\prime}$ be a field extension, $\alpha \in K^{\prime}$ and

$$
\varphi_{\alpha}: K[x] \longrightarrow K[\alpha], x \longmapsto \alpha
$$

Then we call α transcendental over K

$$
\begin{aligned}
: & \Longleftrightarrow \varphi_{\alpha} \text { is an isomorphism } \\
& \Longleftrightarrow \operatorname{ker}\left(\varphi_{\alpha}\right)=0 \\
& \Longleftrightarrow \operatorname{dim}_{K} K[\alpha]=\infty \\
& \Longleftrightarrow K[\alpha] \text { is not finitely generated as } K \text { - vector space }
\end{aligned}
$$

We call α algebraic over K

$$
\begin{aligned}
& \Longleftrightarrow \Longleftrightarrow \varphi_{\alpha} \text { is not injective } \\
& \Longleftrightarrow 0 \neq \operatorname{ker}\left(\varphi_{\alpha}\right)=\left\langle\mu_{\alpha}\right\rangle \preccurlyeq K[x] \\
& \Longleftrightarrow \exists 0 \neq \mu_{\alpha} \in K[x]: \mu_{\alpha}(\alpha)=0 \\
& \Longleftrightarrow \nLeftarrow \mu_{\alpha} \text { monic }: \mu_{\alpha}(\alpha)=0 \\
& \Longleftrightarrow \operatorname{dim}_{K}(K[\alpha])<\infty \\
& \Longleftrightarrow K[\alpha] \text { is a finitely generated } K \text { - vector space }
\end{aligned}
$$

Note. The step marked by $\left({ }^{*}\right)$ does not work in general rings!
Definition 6.1. Let $R \subseteq R^{\prime}$ be a ring extension, $\alpha \in R^{\prime}, I \preccurlyeq R$,

$$
\varphi_{\alpha}: R[x] \longrightarrow R[\alpha] \subseteq R^{\prime}, x \longmapsto \alpha
$$

(a) α is called transcendental ${ }_{/ R}$ or algebraically independent ${ }_{/ R}: \Longleftrightarrow \varphi_{\alpha}$ is an isomorphism $\Longleftrightarrow \operatorname{ker}\left(\varphi_{\alpha}\right)=0$
(b) α is called integral $_{/ R}$

$$
: \Longleftrightarrow \exists 0 \neq f=x^{n}+\sum_{i=0}^{n-1} f_{i} x^{i} \in R[x] \text { monic, such that } f(\alpha)=0
$$

(c) R^{\prime} is integral $_{/ R}: \Longleftrightarrow$ Every $\alpha \in R^{\prime}$ is integral $/ R$

6. Integral Ring Extensions

(d) R^{\prime} is finite $/ R: \Longleftrightarrow R^{\prime}$ is finitely generated as an R-module,

$$
: \Longleftrightarrow \exists \alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}: R^{\prime}=\sum_{i=1}^{n} \alpha_{i} R
$$

(e) R^{\prime} is a finitely generated R-algebra

$$
: \Longleftrightarrow \exists \alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}: R^{\prime}=R\left[\alpha_{1}, \ldots, \alpha_{n}\right]
$$

Example 6.2. Let R be a UFD, $R^{\prime}:=\operatorname{Quot}(R)$ and $\alpha=\frac{a}{b} \in R^{\prime} ; a, b \in R, b \neq 0$. Then we have that $0 \neq b x-a \in R[x]$ and since α is a zero of this polynomial, it is not transcendental. However, since we're not in a field, this does not imply automatically, that α is integral. It may well be that it is neither of these. In fact, we can show:

$$
\alpha \text { is integral }_{/ R} \Longleftrightarrow \alpha \in R
$$

Proof. The implication " \Longleftarrow " is clear, we only have to show " \Longrightarrow ":
W.l.o.g. we can assume, that $\operatorname{gcd}(a, b) \in R^{*}$. Since α is integral ${ }_{/ R}$ there exists a polynomial $0 \neq f=x^{n}+\sum_{i=0}^{n-1} f_{i} x^{i} \in R[x]$, such that $f(\alpha)=0$. Thus we have:

$$
\begin{aligned}
0 & =f\left(\frac{a}{b}\right)=\frac{a^{n}}{b^{n}}+\sum_{i=0}^{n-1} f_{i} \frac{a^{i}}{b^{i}} \\
\Longrightarrow a^{n} & =-\sum_{i=0}^{n-1} f_{i} a^{i} b^{n-i} \\
& =b \underbrace{\left(-\sum_{i=0}^{n-1} f_{i} a^{i} b^{n-i-1}\right)}_{\in R}
\end{aligned}
$$

Thus we know that $b \mid a^{n}$ and by the assumption above follows $b \in R^{*}$ and thus $\alpha \in R$

We summarize:

- The elements of $R^{\prime} \backslash R$ are neither transcendental nor integral $/ R$
- If $\alpha \notin R$, then $R[\alpha]$ is not finitely generated as R-module (see 6.3). So
α transcendental $\nLeftarrow R[\alpha]$ is not finitely generated $/ R$
- E.g. $\alpha \in \mathbb{Q}$ integral $_{/ R} \Longleftrightarrow \alpha \in \mathbb{Z}$

Proposition 6.3. Let $R \subseteq R^{\prime}$ be a ring extension, $\alpha \in R^{\prime}$ Then the following are equivalent:

- α is $_{\text {integral }}^{/ R}$
- $R[\alpha]$ is finite $/ R$
- There exists an $R[\alpha]$-module M, such that $R[\alpha] \subseteq M$ and M is finite ${ }_{/ R}$

Proof. We show three implications:

- "(a) $\Longrightarrow(\mathrm{b}) ": f=x^{n}+\sum_{i=0}^{n-1} f_{i} x^{i} \in R[x]$ with $f(\alpha)=0$. Thus $R[\alpha]=$ $\left\langle\alpha^{n-1}, \ldots, \alpha, 1\right\rangle$
- "(b) $\Longrightarrow(\mathrm{c}) ":$ Set $M=R[\alpha]$
-"(c) \Longrightarrow (a)": Apply 2.6 (Cayley-Hamilton) to $\varphi: M \rightarrow M, m \mapsto \alpha m, I=R$.

$$
\begin{aligned}
& \Longrightarrow \exists \chi_{\varphi} \in R[x] \text { monic, such that } \chi_{\varphi}(\varphi)=0 \\
& \Longrightarrow 0=\chi_{\varphi}(\varphi)(\underbrace{1}_{\in M \supseteq R[\alpha]})=\chi_{\varphi}(\alpha) \cdot 1=\chi_{\varphi}(\alpha)
\end{aligned}
$$

Corollary 6.4 (Tower Law). Let $R \subseteq R^{\prime} \subseteq R^{\prime \prime}$ be ring extensions. Then:

(b) If R^{\prime} is finite $/ R, R^{\prime \prime}$ finite $_{/ R^{\prime}} \Longrightarrow R^{\prime \prime}$ is finite $/ R$
(c) $\alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}$ integral $_{/ R} \Longrightarrow R\left[\alpha_{1}, \cdots, \alpha_{n}\right]$ is finite $_{/ R}$
(d) R^{\prime} integral $_{/ R}, R^{\prime \prime}$ integral $_{/ R^{\prime}} \Longrightarrow R^{\prime \prime}$ integral $_{/ R}$
(e) $\operatorname{Int}_{R^{\prime}}(R):=\left\{\alpha \in R^{\prime} \mid \alpha\right.$ integral $\left._{/ R}\right\}$, the integral closure of R in R^{\prime} is a subring of R^{\prime}

Proof.
(a) Let $\alpha \in R^{\prime} \Longrightarrow R \subseteq R[\alpha] \subseteq R^{\prime}$. Applying 6.3 to $M:=R^{\prime}$ yields that α is integral $_{/ R}$
(b) $R^{\prime}=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle_{R}, R^{\prime \prime}:=\left\langle\beta_{1}, \cdots, \beta_{n}\right\rangle_{R^{\prime}}$

$$
\Longrightarrow R^{\prime \prime}=\left\langle\alpha_{i} \cdot \beta_{j} \mid i=1 . . m, j=1 . . n\right\rangle_{R}
$$

(c) We do an induction on n. For $n=1$ we just have to apply 6.3. Now assume the statement is true for $n-1$. We get:

$$
R \underbrace{\subseteq}_{\text {finite by induction }} R\left[\alpha_{1}, \cdots, \alpha_{n-1}\right] \subseteq R\left[\alpha_{1}, \cdots, \alpha_{n}\right]
$$

where the last inclusion is also finite by 6.3, since α_{n} is integral $_{/ R}$ (and thus also integral $\left._{/ R\left[\alpha_{1}, \cdots, \alpha_{n-1}\right]}\right)$. With (b) we conclude that $R\left[\alpha_{1}, \cdots, \alpha_{n}\right]$ is finite $/ R$.

6. Integral Ring Extensions

(d) Let $\alpha \in R^{\prime \prime}$

$$
\begin{aligned}
\Longrightarrow & \exists b_{0}, \cdots, b_{n-1} \in R^{\prime}: \alpha^{n}+b_{n-1} \alpha^{n-1}+\ldots+b_{0}=0 \\
\Longrightarrow & \alpha \text { is integral } / R\left[b_{0}, \cdots, b_{n-1}\right] \\
\Longrightarrow & R \subseteq R\left[b_{0}, \cdots, b_{n-1}\right] \text { is finite by (c), since } R^{\prime} \text { is integral } / R \text { and } \\
& R\left[b_{0}, \cdots, b_{n-1}\right] \subseteq R\left[b_{0}, \cdots, b_{n-1}, \alpha\right] \text { finite by } 6.3 \\
\Longrightarrow & R \subseteq R\left[b_{0}, \cdots, b_{n-1}, \alpha\right] \text { is finite } / R \text { by (b) and by (a) integral } / R, \\
& \text { in particular, } \alpha \text { is integral } / R
\end{aligned}
$$

(e) Let $\alpha, \beta \in \operatorname{Int}_{R^{\prime}}(R)$. Then by (c) $R[\alpha, \beta]$ is finite ${ }_{/ R}$, in particular integral ${ }_{R}$. Thus $\alpha+\beta, \alpha \cdot \beta,-\alpha, 1 \in \operatorname{Int}_{R^{\prime}}(R)$

Example 6.5.

(a) R^{\prime} integral $_{/ R} \nRightarrow R^{\prime}$ finite $_{/ R}$. E.g. Let $R^{\prime}:=\operatorname{Int}_{\mathbb{C}}(\mathbb{Q}), R:=\mathbb{Q}$
(b) $R^{\prime}:=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle, R:=K[x]$. Consider $R^{i} R^{\prime}, x \mapsto \bar{x}$. Thus

$$
R^{\prime}=\left\langle 1, \bar{y}, \bar{y}^{2}\right\rangle_{R}
$$

is finite, hence integral.
(c) $\bar{K}\left[x_{1}, \ldots, x_{n}\right]$ is integral over $K\left[x_{1}, \ldots, x_{n}\right]$, see Exercises.

Definition 6.6. Let $R \subseteq R^{\prime}$ be a ring extension
(a) R is integrally closed in $R^{\prime}: \Longleftrightarrow \operatorname{Int}_{R^{\prime}}(R)=R$
(b) R is reduced $: \Longleftrightarrow \mathfrak{P}(R)=0$
(c) R is normal $: \Longleftrightarrow R$ is reduced and integrally closed in $\operatorname{Quot}(R)$

Note. Some authors require R to be an ID as well
(d) If R is reduced, then $R \leftharpoonup \operatorname{Int}_{\text {Quot }(R)}(R)$ is called the normalisation of R.

Example 6.7.

(a) R UFD $\stackrel{\underline{\underline{6.2}}}{\Longrightarrow} R$ is normal, e.g. \mathbb{Z} and $K[\underline{x}]$ are normal.
(b) $K[x] /\left\langle x^{2}\right\rangle$ is not reduced, since $0 \neq \bar{x} \in \mathfrak{R}(R)$
(c) $R=K[x, y] /\left\langle x^{2}-y^{3}\right\rangle$ is not normal (but reduced!), since R is not integrally closed in $\operatorname{Quot}(R)$.

6. Integral Ring Extensions

Proof. Let $\alpha:=\frac{\bar{x}}{\bar{y}} \in \operatorname{Quot}(R)$

$$
\Longrightarrow \alpha^{2}-\bar{y}=\frac{\bar{x}^{2}}{\bar{y}^{2}}-\bar{y}=\frac{\bar{y}^{3}}{\bar{y}^{2}}-\bar{y}=\overline{0}
$$

$\Longrightarrow \alpha$ is a zero of $z^{2}-\bar{y} \in R[z]$, hence integral $/ R$
But suppose $\alpha \in R$

$$
\begin{aligned}
& \Longrightarrow \exists p \in K[x, y]: \bar{p}=\frac{\bar{x}}{\bar{y}}=\alpha \\
& \Longrightarrow \overline{y p}-\bar{x}=\overline{0} \\
& \Longrightarrow y p-x \in\left\langle x^{2}-y^{3}\right\rangle, \text { but } \operatorname{deg} x=1, \operatorname{deg} x^{2}=2 \dot{z} \\
& \Longrightarrow \alpha \notin R
\end{aligned}
$$

(d) $\operatorname{Int}_{R^{\prime}}\left(\operatorname{Int}_{R^{\prime}}(R)\right)=\operatorname{Int}_{R^{\prime}}(R)$, i.e. $\operatorname{Int}_{R^{\prime}}(R)$ is integrally closed in R^{\prime}

Proof. Since " \supseteq " is clear, we only have to show " \subseteq ":
We know:

$$
R \underbrace{\subseteq}_{\text {integral }} \operatorname{Int}_{R^{\prime}}(R) \underbrace{\subseteq}_{\text {integral }} \operatorname{Int}_{R^{\prime}}\left(\operatorname{Int}_{R^{\prime}}(R)\right)
$$

Hence, by 6.4, $R \subseteq \operatorname{Int}_{R^{\prime}}\left(\operatorname{Int}_{R^{\prime}}(R)\right)$ is integral and thus

$$
\operatorname{Int}_{R^{\prime}}\left(\operatorname{Int}_{R^{\prime}}(R)\right) \subseteq \operatorname{Int}_{R^{\prime}}(R)
$$

Proposition 6.8 (Integral dependence is preserved under localisation and quotients). Let $R \subseteq R^{\prime}$ be a ring extension, $S \subseteq R$ multipl. closed and $I \lessgtr R^{\prime}$. Then:
(a) R^{\prime} integral $_{/ R} \Longrightarrow R^{\prime} / I$ is integral ${ }_{/ R / I \cap R}$
(b) R^{\prime} integral $_{/ R} \Longrightarrow S^{-1} R^{\prime}$ is integral ${ }_{/ S^{-1} R}$
(c) $S^{-1}\left(\operatorname{Int}_{R^{\prime}}(R)\right)=\operatorname{Int}_{S^{-1} R^{\prime}}\left(S^{-1} R\right)$
(d) If $f \in K[\underline{x}]$, then $\bar{K}[\underline{x}] /\langle f\rangle$ is integral over $K[\underline{x}] /\langle f\rangle$.

Proof.
(a) $I \cap R \boxtimes R$ and $R / I \cap R \hookrightarrow R^{\prime} / I$ is an inclusion. The rest is clear (just factorize all polynomial coefficients modulo $I \cap R$).

6. Integral Ring Extensions

(b) Let $\frac{a}{s} \in S^{-1} R$. Since $a \in R^{\prime}$, there exist $b_{i} \in R$, such that

$$
a^{n}+b_{n-1} a^{n-1}+\ldots+b_{0}=0
$$

and thus also

$$
\left(\frac{a}{s}\right)^{n}+\frac{b_{n-1}}{s} \cdot\left(\frac{a}{s}\right)^{n-1}+\ldots+\frac{b_{0}}{s^{n}}=0
$$

which shows that $\frac{a}{s}$ is integral $/ S^{-1} R$.
(c) " \subseteq " follows from (b) and " \supseteq " is an exercise.
(d) By (a) it suffices to show that $\langle f\rangle_{\bar{K}[x]} \cap K[\underline{x}]=\langle f\rangle_{K[x]}$. This follows from the Exercises.

Proposition 6.9 (Normality is a local property). For an integral domain R the following are equivalent:
(a) R is normal
(b) R_{P} is normal $\forall P \in \operatorname{Spec}(R)$
(c) $R_{\mathfrak{m}}$ is normal $\forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}(R)$

Proof.
Note. $Q:=\operatorname{Quot}(R)=\operatorname{Quot}\left(R_{P}\right)$ and by Exercise $26 R_{P}$ is a reduced ID!

- "(a) $\Longrightarrow(b) ":$

$$
\operatorname{Int}_{Q}\left(R_{P}\right)=\operatorname{Int}_{Q_{P}}\left(R_{P}\right)=\left(\operatorname{Int}_{Q}(R)\right)_{P}=R_{P}
$$

Hence R_{P} is normal.

- " $(\mathrm{b}) \Longrightarrow(\mathrm{c}) "$ is clear
- "(c) \Longrightarrow (a)": Consider the map $i: R \hookrightarrow \operatorname{Int}_{Q}(R), r \mapsto \frac{r}{1}$. It induces maps $i_{\mathbf{m}}: R_{\mathfrak{m}} \hookrightarrow\left(\operatorname{Int}_{Q}(R)\right)_{\mathfrak{m}}: \frac{a}{b} \mapsto \frac{a}{b}$ and

$$
\begin{aligned}
\left(\operatorname{Int}_{Q}(R)\right)_{\mathfrak{m}} & =\operatorname{Int}_{Q_{\mathfrak{m}}}\left(R_{\mathfrak{m}}\right) \\
& =\operatorname{Int}_{Q}\left(R_{\mathbf{m}}\right) \\
& =R_{\mathbf{m}}
\end{aligned}
$$

Thus, $i_{\boldsymbol{m}}$ is surjective and since by 3.12 surjectivity is a local property, also i is surjective. Hence R is normal

6. Integral Ring Extensions

B). Going-Up Theorem

Proposition 6.10. Let R^{\prime} be integral $/ R, \alpha \in R$. Then:
(a) $\alpha \in R^{*} \Longleftrightarrow \alpha \in\left(R^{\prime}\right)^{*}$
(b) If R^{\prime} is an ID then: R is a field $\Longleftrightarrow R^{\prime}$ is a field
(c) $\mathrm{m} \triangleleft \cdot R^{\prime} \Longleftrightarrow \mathrm{m} \in \operatorname{Spec}\left(R^{\prime}\right)$ and $\mathrm{m} \cap R \triangleleft \cdot R$

Proof.
(a) " \Longrightarrow " is clear, we only have to show " $\Longleftarrow "$: So let $\beta \in R^{\prime}$, such that $\beta \cdot \alpha=1$. Since β is integral ${ }_{R}$, there exist $a_{i} \in R$ such that $\beta^{n}+\sum_{i=0}^{n-1} a_{i} \beta^{i}=0$

$$
\Longrightarrow \beta=\beta^{n} \cdot \alpha^{n-1}=\sum_{i=0}^{n-1} \underbrace{\left(-a_{i}\right)}_{\in R} \underbrace{\beta^{i} \alpha^{n-1}}_{=\alpha^{n-i} \in R} \in R
$$

Thus $\beta \in R$ and $\alpha \in R^{*}$
(b) " $\Longleftarrow "$ follows from (a), it remains to show " \Longrightarrow ": Let $0 \neq \alpha \in R^{\prime}$. Then there exists $0 \neq f=x^{n}+\sum_{i=0}^{n-1} f_{i} x^{i} \in R[x]$ such that $f(\alpha)=0$ and f has minimal degree. Since R is an ID we can w.l.o.g. assume that $f_{0} \neq 0$ (otherwise just "cancel out" x).

$$
\begin{aligned}
\Longrightarrow f_{0} & =-\alpha^{n}-\sum_{i=1}^{n-1} f_{i} \alpha^{i} \\
& =\alpha\left(-\alpha^{n-1}-\sum_{i=1}^{n-1} f_{i} \alpha^{i-1}\right)
\end{aligned}
$$

Since R is a field $f_{0} \neq 0$ is a unit and thus

$$
1=\alpha \cdot \underbrace{f_{0}^{-1} \cdot(\ldots)}_{\in R^{\prime}}
$$

(c) By 6.8 (a) $R / \mathfrak{m} \cap R \hookrightarrow R^{\prime} / \mathfrak{m}$ is integral for all $\mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}\left(R^{\prime}\right)$ and by (b) follows

$$
R / \mathrm{m} \cap R \text { is a field } \Longleftrightarrow R^{\prime} / \mathrm{m} \text { is a field }
$$

which is equivalent to saying:

$$
\mathrm{m} \cap R \triangleleft \cdot R \Longleftrightarrow \mathrm{~m} \triangleleft \cdot R^{\prime}
$$

6. Integral Ring Extensions

Example 6.11.

Let $R^{\prime}=K[x, y] /\langle x \cdot y\rangle, R=K[x] \hookrightarrow R^{\prime}$ by $x \mapsto \bar{x}$. Let $P:=\langle\bar{x}\rangle \in \operatorname{Spec}\left(R^{\prime}\right)$. We see that $P \cap R=\langle x\rangle \triangleleft \cdot R$, but $\langle\bar{x}\rangle$ is not maximal in R^{\prime}. Thus, $R \subseteq R^{\prime}$ is not integral!

Remark 6.12. Recall the 1:1-correspondences:
(a) $\{P \in \operatorname{Spec}(R) \mid I \subseteq P\} \xrightarrow{1: 1} \operatorname{Spec}(R / I)$ by $P \mapsto \bar{P}$
(b) $\{P \in \operatorname{Spec}(R) \mid P \cap S=\emptyset\} \xrightarrow{1: 1} \operatorname{Spec}\left(S^{-1} R\right)$ by $P \mapsto S^{-1} P$

Our aim is to find a similar correspondence for integral ring extensions.
Corollary 6.13. Let R^{\prime} be integral ${ }_{/ R}, Q, Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right), Q \subsetneq Q^{\prime}$

$$
\Longrightarrow Q \cap R \subsetneq Q^{\prime} \cap R
$$

Proof. Suppose that $P:=Q \cap R=Q^{\prime} \cap R \in \operatorname{Spec}(R)$. Then by $6.8 R_{P}^{\prime}$ is integral $_{/ R_{P}}$, where $Q_{P} \subseteq Q_{P}^{\prime} \in \operatorname{Spec}\left(R_{P}^{\prime}\right)$ and $P_{P} \triangleleft \cdot R_{P}$, which can be written as:

$$
\begin{aligned}
& P_{P}=\left(Q^{\prime} \cap R\right)_{P}=Q_{P}^{\prime} \cap R_{P} \text { and } \\
& P_{P}=(Q \cap R)_{P}=Q_{P} \cap R_{P}
\end{aligned}
$$

By $6.10 Q_{P}, Q_{P}^{\prime} \triangleleft \cdot R_{P}^{\prime}$ and since one is contained in the other we know that $Q_{P}=Q_{P}^{\prime}$. Thus, by 6.12 (b) we derive that $Q=Q^{\prime}$.

Example 6.14.

(a) Choose R and R^{\prime} as in 6.11, Let $Q:=\langle\bar{x}\rangle \subsetneq\langle\bar{x}, \bar{y}\rangle=: Q^{\prime}$, which are both prime. However $Q \cap R=\langle x\rangle=Q^{\prime} \cap R$.
(b) Even if $Q \nsubseteq Q^{\prime}$, it might be possible that $Q \cap R=Q^{\prime} \cap R$: Let $R:=K[x] \subseteq$ $K[x, y] /\left\langle x^{2}-y^{2}\right\rangle=: R^{\prime}$ by $x \mapsto \bar{x}$. Choose

$$
\begin{aligned}
P & :=\langle x-1\rangle \in \operatorname{Spec}(R) \\
Q & :=\langle\bar{x}-1, \bar{y}-1\rangle \in \operatorname{Spec}\left(R^{\prime}\right) \\
Q^{\prime} & :=\langle\bar{x}-1, \bar{y}+1\rangle \in \operatorname{Spec}\left(R^{\prime}\right)
\end{aligned}
$$

Then $Q \cap R=\langle x-1\rangle=Q^{\prime} \cap R$, but $Q \nsubseteq Q^{\prime} \nsubseteq Q$.
Theorem 6.15 (Lying-Over and Going-Up). Let R^{\prime} be integral/ ${ }_{R}$
(a) (Lying-Over)

$$
\forall P \in \operatorname{Spec}(R) \exists Q \in \operatorname{Spec}\left(R^{\prime}\right): Q \cap R=P
$$

6. Integral Ring Extensions

(b) (Going-Up) $\forall P, P^{\prime} \in \operatorname{Spec}(R), Q \in \operatorname{Spec}\left(R^{\prime}\right)$, such that

$$
Q \supseteq Q \cap R=P \subsetneq P^{\prime}
$$

there exists a $Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$, such that $Q \subsetneq Q^{\prime}, Q^{\prime} \cap R=P^{\prime}$

Proof.
(a) Idea: Localise at P and choose a maximal ideal $\mathfrak{m} \triangleleft \cdot R_{P}^{\prime}$. Then show that $\mathfrak{m} \cap R^{\prime}$ is the desired ideal.

By 6.8(b) we know that $R_{P} \subseteq R_{P}^{\prime}$ is an integral extension, where $P_{P} \triangleleft \cdot R_{P}$ is the unique maximal ideal. Now choose any maximal ideal $\mathrm{m} \triangleleft \cdot R_{P}^{\prime}$. By 6.10 (c) we get

$$
\begin{aligned}
& \Longrightarrow \mathbf{m} \cap R_{P} \triangleleft \cdot R_{P} \\
& \Longrightarrow \mathbf{m} \cap R_{P}=P_{P}
\end{aligned}
$$

Now set $Q:=\mathfrak{m} \cap R^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$

$$
\begin{aligned}
\Longrightarrow P & =P_{P} \cap R \\
& =\left(\mathfrak{m} \cap R_{P}\right) \cap R \\
& =\mathfrak{m} \cap R \\
& =\left(\mathfrak{m} \cap R^{\prime}\right) \cap R=Q \cap R
\end{aligned}
$$

(b) Idea: Reduce modulo Q and apply (a):

By6.8(a) $R / P \subseteq R^{\prime} / Q$ is integral and $P^{\prime} / P \in \operatorname{Spec}(R / P)$. By (a) there exists a $\overline{Q^{\prime}} \in \operatorname{Spec}\left(R^{\prime} / Q\right)$, such that $\overline{Q^{\prime}} \cap R / P=P^{\prime} / P$ and by 6.12(b) this corresponds to a $Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$ with $Q \subsetneq Q^{\prime}$ and $Q^{\prime} \cap R=P^{\prime}$.

Example 6.16 (Geometrical interpretation).
(a) If the component Q maps to the component P, then every point $P^{\prime} \in P$ has a preimage Q^{\prime} in Q.
(b) Let $R:=K[x], R^{\prime}:=\operatorname{Quot}(R)=K(x)$ and $K=\bar{K}$. Then $\operatorname{Spec}\left(R^{\prime}\right)=\{\langle 0\rangle\}$ and $\operatorname{Spec}(R)=\{\langle 0\rangle\} \cup\{\langle x-a\rangle \mid a \in K\}$.
Now let $P:=\langle 0\rangle \subsetneq\langle x-1\rangle=: P^{\prime}$, where $P \subseteq Q=\langle 0\rangle$, but there is no prime ideal 'lying over' P^{\prime}. In particular, this extension can not be integral.
(c) Let $R:=K[x] \subseteq K[x, y] /\langle 1-x y\rangle=: R^{\prime}$ by $x \mapsto \bar{x}$. Now choose

- $Q:=\langle\overline{0}\rangle \in \operatorname{Spec}\left(R^{\prime}\right)$
- $P:=Q \cap R=\langle 0\rangle \in \operatorname{Spec}(R)$
- $P^{\prime}:=\langle x\rangle \in \operatorname{Spec}(R)$

Then $P \subsetneq P^{\prime}$, but there is no prime ideal $Q^{\prime} \supseteq Q$, such that $Q^{\prime} \cap R=P^{\prime}$, since otherwise, as $\bar{x} \in Q^{\prime}$, also $\overline{x y}=\overline{1} \in Q^{\prime}$ and thus $Q^{\prime}=R^{\prime} \not Q^{\prime}$ prime Note. \bar{y} is not integral $/ R$ and thus R^{\prime} is not integral $/ R$

Corollary 6.17.

$$
R^{\prime} \text { integral }_{/ R} \Longrightarrow \operatorname{dim} R=\operatorname{dim} R^{\prime}
$$

Proof.

" \leq " : Let $P_{0} \subsetneq \ldots \subsetneq P_{m}$ be a chain in R, P_{i} prime. By 6.15 there exists a chain $Q_{0} \subsetneq \ldots \subsetneq Q_{m}$ in R^{\prime}, Q_{j} prime.
$" \geq "$: Let $Q_{0} \subsetneq \ldots \subsetneq Q_{m}$ be a chain in R^{\prime}, Q_{j} prime. By 6.13 we have that $Q_{0} \cap R \subsetneq$ $\ldots \subsetneq Q_{m} \cap R$ is a chain of prime ideals in R.

C). Going-Down Theorem

Motivation 6.18.

(a) We want to find a reverse statement to 'Going-Up', i.e. if we have $P \subsetneq P^{\prime} \in$ $\operatorname{Spec}(R)$ and $P^{\prime}=Q^{\prime} \cap R$ with $Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$, is there a $Q^{\prime} \supsetneq Q \in \operatorname{Spec}\left(R^{\prime}\right)$, such that $Q \cap R=P$?
(b) The problem is, that R^{\prime} integral over R is not sufficient! E.g. choose

$$
i: R:=K[x, y, z] /\left\langle x^{2}-y^{2}-z^{2}\right\rangle \hookrightarrow K[t, z]=: R^{\prime}
$$

with

$$
\bar{x} \mapsto t^{3}-t, \bar{y} \mapsto t^{2}-1, \bar{z} \mapsto z
$$

Then $R \cong \operatorname{Im}(i)=K\left[t^{3}-t, t^{2}-1, z\right]=K\left[t^{3}-t, t^{2}, z\right]$ and by choosing $f:=$ $X^{2}-t^{2} \in R[X]$ we get $f(t)=0$ and thus t is integral $/ R$. Therefore, as R^{\prime} is finite $_{/ R}$, hence integral. Now choose

$$
Q^{\prime}=\langle t-1, z+1\rangle
$$

Then

$$
\begin{aligned}
Q^{\prime} \cap R & =\left\langle t^{3}-t, t^{2}-1, z+1\right\rangle=: P^{\prime} \\
& =\langle x, y, z+1\rangle \\
& \supsetneq\left\langle y-\left(z^{2}+1\right), x-z y\right\rangle \\
& =\left\langle t-z^{2},(t-z)\left(t^{2}-1\right)\right\rangle \\
& =\langle t-z\rangle \cap R=P
\end{aligned}
$$

Now assume that there exists a $Q \in \operatorname{Spec}(R)$, such that $Q \cap R=P$ and $Q \subsetneq Q^{\prime}$. Then

$$
(t-1)(t+1)(t-z)=(t-z)\left(t^{2}-1\right) \in Q
$$

Thus $t-1 \in Q$ or $t-z \in$ or $t+1 \in Q$. Also:

$$
(t-z)(t+z)=t^{2}-z^{2} \in Q
$$

and thus $t-z \in Q$ or $t+z \in Q$. We now have to consider three cases:

- 1st Case: $t-z \in Q \subset Q^{\prime}$. Then:

$$
2=(t-z)-(t-1)+(z+1) \in Q^{\prime} \not
$$

- 2nd Case: $t+z, t-1 \in Q$. Then

$$
z+1=(t+z)-(t-1) \in Q \text { and thus } Q=Q^{\prime} \text { \& }
$$

- 3rd Case: $t+z, t+1 \in Q \subset Q^{\prime}$. Then

$$
2=(t+1)-(t-1) \in Q^{\prime} \dot{z}
$$

Hence there is no $Q \in \operatorname{Spec}(R)$ as described a above
Note. $\langle z-t\rangle \cap R=P$, but $\langle z-t\rangle \subsetneq Q^{\prime}$
The crucial reason for our failure is that R is not normal!
Theorem 6.19 (Going-Down). Let $R \subseteq R^{\prime}$ be ID's, R normal (i.e. $\operatorname{Int}_{Q u o t}(R)(R)=$ $R)$ and R^{\prime} integral $_{/ R}$. Then, given $P, P^{\prime} \in \operatorname{Spec}(R), Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$, such that $P \subsetneq P^{\prime}$ and $P^{\prime}=Q^{\prime} \cap R$:

$$
\exists Q \in \operatorname{Spec}\left(R^{\prime}\right): Q \subsetneq Q^{\prime} \text { and } Q \cap R=P
$$

6. Integral Ring Extensions

Proof. postponed to 6.24
Definition 6.20. Let $R \subseteq R^{\prime}$ be a ring extension, $I \preccurlyeq R$.
(a) $\alpha \in R^{\prime}$ is integral ${ }_{/ I}$

$$
: \Longleftrightarrow \exists f=x^{n}+\sum_{j=0}^{n-1} f_{j} x^{j}, f_{j} \in I \text { and } f(\alpha)=0
$$

(b) $\operatorname{Int}_{R^{\prime}}(I):=\left\{\alpha \in R^{\prime} \mid \alpha\right.$ is integral $\left._{/ I}\right\}$ is the integral closure of I in R^{\prime}.

Proposition 6.21. Let $R \subseteq R^{\prime}$ be a ring extension, $I \preccurlyeq R$. Then:

$$
\operatorname{Int}_{R^{\prime}}(I)=\sqrt{I \cdot \operatorname{Int}_{R^{\prime}}(R)} \preccurlyeq \operatorname{Int}_{R^{\prime}}(R)
$$

Proof.
$" \subseteq$ ": Let $\alpha \in \operatorname{Int}_{R^{\prime}}(I)$. Then there exist $f_{0}, \ldots, f_{n-1} \in I$, such that

$$
\alpha^{n}=-\sum_{j=0}^{n-1} \underbrace{f_{j}}_{\in I} \underbrace{\alpha^{j}}_{\in \operatorname{Int}_{R^{\prime}}(R)} \in I \cdot \operatorname{Int}_{R^{\prime}}(R)
$$

Thus $\alpha \in \sqrt{I \cdot \operatorname{Int}_{R^{\prime}}(R)}$.
$" \supseteq ":$ Let $\beta \in \sqrt{I \cdot \operatorname{Int}_{R^{\prime}}(R)}$.

$$
\begin{aligned}
& \Longrightarrow \exists n: \beta^{n} \in I \cdot \operatorname{Int}_{R^{\prime}}(R) \\
& \Longrightarrow \exists a_{i} \in I, b_{i} \in \operatorname{Int}_{R^{\prime}}(R): \beta^{n}=\sum_{i=1}^{m} a_{i} b_{i}
\end{aligned}
$$

Set $M:=R\left[b_{1}, \ldots, b_{m}\right]$, which is a finite R-module and consider

$$
\varphi: M \rightarrow M, \tilde{m} \mapsto \beta^{n} \tilde{m},
$$

which is R-linear. Obviously $\varphi(M) \subseteq I \cdot M$ and by 2.6 there exists

$$
\chi_{\varphi}=x^{n}+\sum_{i=0}^{n-1} c_{j} x^{j}
$$

with $c_{j} \in I^{k-j} \subseteq I$ and $\chi_{\varphi}(\varphi)=0$. Thus

$$
0=\chi_{\varphi}(\varphi)(1)=\chi_{\varphi}\left(\beta^{n}\right)
$$

Thus β^{n} is integral $_{/ I}$ and therefore β is integral ${ }_{/ I}$ (just replace x by x^{n} in the polynomial).

Proposition 6.22. Let R be a normal $I D, K=\operatorname{Quot}(R), K \subseteq K^{\prime}$ a field extension, $I \preccurlyeq R$ and $\alpha \in \operatorname{Int}_{K^{\prime}}(I)$. Then α is algebraic over K and the minimal polynomial of α over K is of the form

$$
\mu_{\alpha}=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i} \in K[x]
$$

with $a_{i} \in \sqrt{I}$
Proof. Since α is integral $_{/ I}$, there exists $0 \neq f=x^{m}+\sum_{j=0}^{m-1} f_{j} x^{j}$ with $f_{j} \in I$ and $f(\alpha)=0$. Now let

$$
\prod_{i=1}^{n}\left(x-\alpha_{i}\right)=\mu_{\alpha}=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i} \in K[x]
$$

be the minimal polynomial of α over K, with $\alpha_{i} \in \bar{K}$, the algebraic closure of K. W.l.o.g. $\alpha_{1}=\alpha$. Since $f(\alpha)=0$, we know that $f \in\left\langle\mu_{\alpha}\right\rangle_{K[x]}$.

$$
\begin{aligned}
& \Longrightarrow \exists p \in K[x]: f=p \cdot \mu_{\alpha} \\
& \Longrightarrow 0=\mu_{\alpha}\left(\alpha_{i}\right) \cdot p\left(\alpha_{i}\right)=f\left(\alpha_{i}\right) \forall i=1 . . n \\
& \Longrightarrow \alpha_{i} \text { integral }_{/ I} \\
& \Longrightarrow\left\{a_{0}, \ldots, a_{n-1}\right\} \subseteq \operatorname{Int}_{\bar{K}}(I), \text { since } a_{i} \in \mathbb{Z}\left[\alpha_{1}, \cdots, \alpha_{n}\right] \forall i \\
& a_{i} \in K \\
& \Longrightarrow
\end{aligned} a_{0}, \ldots, a_{n-1} \in \operatorname{Int}_{K}(I) \stackrel{6.21}{=} \sqrt{I \cdot \operatorname{Int}_{K}(R)}=\sqrt{I \cdot R}=\sqrt{I}, \text { since } R \text { is normal. } .
$$

Lemma 6.23. Let $\varphi: R \rightarrow R^{\prime}$ be a ringhomomorphism, $P \in \operatorname{Spec}(R)$. Then:

$$
\exists Q \in \operatorname{Spec}\left(R^{\prime}\right): Q^{c}=P \Longleftrightarrow\left(P^{e}\right)^{c}=P
$$

Proof.

- " $\Longrightarrow ": P=Q^{c} \Longrightarrow P^{e c}=Q^{c e c} \stackrel{1.10}{=} Q^{c}=P$
- "œ": S:= $(R \backslash P) \subset R^{\prime}$ is multipl. closed. First we show that $P^{e} \cap S=\emptyset$:

Assume $\exists a \in P^{e} \cap S$. Then

$$
\varphi^{-1}(a) \subseteq P^{e c}=P
$$

and

$$
\emptyset \neq \varphi^{-1}(a) \cap \varphi^{-1}(S) \subseteq R \backslash P \text { 亿 }
$$

Thus we know that $S^{-1} P^{e} \subsetneq S^{-1} R^{\prime}$. Therefore there exists a maximal ideal $\mathrm{m} \triangleleft \cdot S^{-1} R^{\prime}$, such that $S^{-1} P^{e} \subseteq m$.

6. Integral Ring Extensions

Now let $Q:=\boldsymbol{m} \cap R^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right)$ and $Q \cap S=\emptyset$.

$$
\begin{aligned}
& \Longrightarrow Q^{c} \cap(R \backslash P)=\emptyset \\
& \Longrightarrow P \subseteq P^{e c} \subseteq Q^{c} \subseteq P \\
& \Longrightarrow Q^{c}=P
\end{aligned}
$$

Proof 6.24 (of 6.19). Consider the extensions $R \subseteq R^{\prime} \subseteq R_{Q^{\prime}}^{\prime}$, where

$$
P \subsetneq P^{\prime}=Q^{\prime} \cap R \subseteq Q^{\prime} \subseteq Q_{Q^{\prime}}^{\prime}
$$

By 6.23 and the 1:1 - correspondence of prime ideals under localisation, it suffices to show that

$$
P \cdot R_{Q^{\prime}}^{\prime} \cap R=P
$$

Proof.
" \supseteq ": 1.10
$" \subseteq ":$ Let $0 \neq a=\frac{b}{s} \in P \cdot R_{Q^{\prime}}^{\prime} \cap R$ with $a \in R, b \in P \cdot R^{\prime}, s \in R^{\prime} \backslash Q^{\prime}$.

$$
\begin{aligned}
\Longrightarrow b \in P \cdot R^{\prime} & \subseteq \sqrt{P \cdot R^{\prime}}=\sqrt{P \cdot \operatorname{Int}_{R^{\prime}}(R)} \stackrel{6.21}{=} \operatorname{Int}_{R^{\prime}}(P) \\
& \subseteq \operatorname{Int}_{K^{\prime}}(P) \text { where } K^{\prime}=\operatorname{Quot}\left(R^{\prime}\right)
\end{aligned}
$$

If we set $K:=\operatorname{Quot}(R)$ and apply 6.22, we get that

$$
\mu_{b}=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i} \in K[x], a_{i} \in \sqrt{P}=P
$$

is the minimal polynomial of $b_{/ K}$.
Now consider the isomorphism

$$
\varphi: K[x] \rightarrow K[x], x \mapsto a x
$$

Then

$$
f:=\frac{1}{a^{n}} \cdot \varphi\left(\mu_{b}\right)=x^{n}+\sum_{i=0}^{n-1} \frac{a_{i}}{a^{n-i}} x^{i} \in K[x] \text { is irreducible }
$$

Since $f(s)=\frac{1}{a^{n}} \mu_{b}(b)=0$, we know that $f=\mu_{s}$ is the minimal polynomial of s over K. Furthermore, since $s \in \operatorname{Int}_{R^{\prime}}(R) \subseteq \operatorname{Int}_{K^{\prime}}(R)$ and by applying 6.22, we get that

$$
b_{i}:=\frac{a_{i}}{a^{n-i}} \in R
$$

Thus

$$
\underbrace{a^{n-i}}_{\in R} \underbrace{b_{i}}_{\in R}=a_{i} \in P \in \operatorname{Spec}(R)
$$

Now assume $a \notin P$. Then $b_{i} \in P$ for all $i=0, \ldots, n-1$.

$$
\begin{aligned}
& \Longrightarrow s^{n}=\underbrace{f(s)}_{=0}-\sum_{i=0}^{n-1} \underbrace{b_{i}}_{\in P} s^{i} \in P \cdot R^{\prime} \subseteq P^{\prime} \cdot R^{\prime} \subseteq Q^{\prime} \\
& \Longrightarrow s \in Q^{\prime}, \text { since } Q^{\prime} \in \operatorname{Spec}\left(R^{\prime}\right) \sharp
\end{aligned}
$$

Thus $a \in P$.

Example 6.25. Is also $\operatorname{codim}(Q)=\operatorname{codim}(Q \cap R)$?
Let $R=K[x, y] \hookrightarrow K[x, y, z] /\langle z(x-z), z y\rangle:=R^{\prime}$ and $Q=\langle\overline{z-1}, \overline{x-1}, \bar{y}\rangle \in$ $\operatorname{Spec}\left(R^{\prime}\right)$. Then

- $\operatorname{codim}(Q)=\operatorname{dim} R_{Q}=1$
- $\operatorname{codim}(Q \cap R)=\operatorname{codim}(\langle x-1, y\rangle)=2>\operatorname{codim}(Q)$

Proposition 6.26.
(a) R^{\prime} integral $_{/ R}, Q \in \operatorname{Spec}\left(R^{\prime}\right) \Longrightarrow \operatorname{codim}(Q) \leq \operatorname{codim}(R \cap Q)$
(b) R^{\prime} integral $_{/ R}, R$ normal and R, R^{\prime} IDs, $Q \in \operatorname{Spec}(R)$

$$
\Longrightarrow \operatorname{codim}(Q)=\operatorname{codim}(R \cap Q)
$$

Proof.
(a) 6.13
(b) 6.19

Philosophy 6.27. Applying "going-up" preserves dimension and applying "goingdown" preserves codimension.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

A). Hilbert's Nullstellensatz

Theorem 7.1 (Algebraic HNS). Let $K \subseteq K^{\prime}$ be a field extension such that

$$
K^{\prime}=K\left[\alpha_{1}, \ldots, \alpha_{n}\right]
$$

is a finitely generated K-algebra. Then K^{\prime} is finite $/_{K}$, in particular it is algebraic ${ }_{/ K}$.
Proof. (due to Zariski) We do an induction on n :

- $(n=1)$: Suppose α_{1} is not algebraic $/ K$. Then α_{1} is transcendental/K. Then

$$
K[x] \cong K\left[\alpha_{1}\right]=K^{\prime} \text { by } x \mapsto \alpha_{1} z
$$

which is a contradiction, since K^{\prime} is a field. Thus α_{1} is algebraic ${ }_{/ K}$, hence $K\left[\alpha_{1}\right]$ is finite ${ }_{K}$ by 6.3,6.4.

- $(n-1 \rightarrow n)$:

Note. K^{\prime} finite $_{/ K} \Longleftrightarrow \alpha_{1}, \ldots, \alpha_{n}$ algebraic $_{/ K}$
Suppose that w.l.o.g. α_{1} is not algebraic/K. Then $R:=K\left[\alpha_{1}\right] \cong K[x]$ is integrally closed in L. Now consider

$$
K \subseteq R=K\left[\alpha_{1}\right] \subseteq \operatorname{Quot}(R)=K\left(\alpha_{1}\right)=: L \subseteq K^{\prime}=R\left[\alpha_{2}, \ldots, \alpha_{n}\right]=L\left[\alpha_{2}, \ldots, \alpha_{n}\right]
$$

(the last equality holds, since $L \subseteq K^{\prime}$). By induction we get that $\alpha_{2}, \ldots, \alpha_{n}$ are algebraic $/ L$. Thus

$$
\exists \mu_{\alpha_{i}}=x^{n_{i}}+\sum_{j=0}^{n_{i}-1} \frac{a_{i j}}{b_{i j}} x^{j} \in L[x] ; \mu_{\alpha_{i}}\left(\alpha_{i}\right)=0 ; a_{i j}, b_{i j} \in R=K\left[\alpha_{1}\right]
$$

Now set

$$
f:=\prod_{i=2}^{n} \prod_{j=0}^{n_{i}-1} b_{i j} \in R \Longrightarrow \mu_{\alpha_{i}} \in R_{f}[x]
$$

Therefore $\alpha_{2}, \ldots, \alpha_{n}$ are integral $_{/ R_{f}}$ and by $6.4 K^{\prime}=R\left[\alpha_{2}, \ldots, \alpha_{n}\right]=R_{f}\left[\alpha_{2}, \ldots, \alpha_{n}\right]$ is integral ${ }_{/ R_{f}}$. Since $L \subseteq K^{\prime}, L$ is also integral ${ }_{/ R_{f}}$. Hence:

$$
K(x) \cong \operatorname{Quot}(R)=L=\operatorname{Int}_{L}\left(R_{f}\right) \stackrel{L=L_{f}}{=} \operatorname{Int}_{L_{f}}\left(R_{f}\right)=(\underbrace{\operatorname{Int}_{L}(R)}_{=R})_{f}=R_{f} \text { 夕 }
$$

Corollary 7.2. Let K be an algebraically closed field. Then:

$$
\mathfrak{m} \triangleleft \cdot K\left[x_{1}, \ldots, x_{n}\right] \Longleftrightarrow \exists \underline{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \in K^{n}: \mathrm{m}=\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle
$$

Proof.

- " ": Consider the map $\varphi_{\underline{a}}: K[\underline{x}] \rightarrow K ; x_{i} \mapsto a_{i}$, which is surjective, where $\operatorname{ker}\left(\varphi_{\underline{a}}\right)=\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle:$
Since " \supseteq " is clear, we only have to show " \subseteq ": By applying the Horner Schema, every polynomial in $K[\underline{x}]$ can be written as

$$
f=\sum_{i=1}^{n} g_{i}\left(x_{i}-a_{i}\right)+r
$$

So obviously $f \in \operatorname{ker}\left(\varphi_{\underline{a}}\right) \Longleftrightarrow r=f(\underline{a})=0$.
Thus $K[\underline{x}] / \mathrm{m} \cong K$, which is a field, hence m is maximal.

- " \Longrightarrow ": Let $\mathrm{m} \triangleleft \cdot K[\underline{x}]$. Then $K^{\prime}=K[\underline{x}] / \mathrm{m}$ is a field and a finitely generated K - algebra via $i: K \rightarrow K[\underline{x}] / \mathrm{m}, a \mapsto \bar{a}$, generated by $\overline{x_{1}}, \ldots, \overline{x_{n}}$. Then by 7.1 K^{\prime} is algebraic $/ K$ and since K is algebraically closed we have that $K=K^{\prime}$. In particular i is surjective.

$$
\Longrightarrow \exists a_{1}, \ldots, a_{n} \in K: \overline{a_{i}}=i\left(a_{i}\right)=\overline{x_{i}}
$$

Thus $\overline{x_{i}}-\overline{a_{i}}=\overline{0}$, i.e. $x_{i}-a_{i} \in \mathfrak{m}$. Thus $\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle \subseteq \mathfrak{m}$ and since both are maximal, we know that $\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle=\mathrm{m}$

Corollary 7.3. If $I \preccurlyeq K[\underline{x}]=: R, I \subsetneq K[\underline{x}]$, then:

$$
\sqrt{I}=\bigcap_{I \subseteq \mathfrak{m} \triangleleft \cdot K[\underline{x}]}
$$

Proof. Since " \subseteq " is clear by 1.15 we only have to show " $?$ ":
Let $f \notin \sqrt{I}$

$$
\begin{aligned}
& \Longrightarrow I_{f} \subsetneq R_{f} \\
& \Longrightarrow \exists \mathfrak{n} \triangleleft \cdot R_{f}: I_{f} \subseteq \mathfrak{n} \not \supset f \\
& \Longrightarrow I \subseteq I_{f} \cap R \subseteq \mathfrak{n} \cap R=: \mathfrak{m} \not \supset f
\end{aligned}
$$

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

We need to show that $\mathrm{m} \triangleleft \cdot R$: Consider the canonical inclusions:

$$
K \hookrightarrow R / \mathrm{m} \hookrightarrow R_{f / \mathrm{n}}=K\left[\underline{x}, \frac{1}{f}\right]_{\mathrm{n}}=: K^{\prime}
$$

where K^{\prime} is a finitely generated K - algebra. By $7.1 R_{f / \mathfrak{n}}$ is finite ${ }_{/ K}$, hence integral ${ }_{/ K}$ by 6.4. Thus $R_{f / \mathrm{n}}$ is also integral $/ R / \mathrm{m}$. By 6.10(b) R / m is a field, thus $\mathrm{m} \triangleleft \cdot R$.

Notation 7.4. For $I \preccurlyeq K[\underline{x}]$ we set

$$
V(I):=\left\{\underline{a} \in K^{n} \mid f(\underline{a})=0 \forall f \in I\right\}
$$

the vanishing set of I.
For $V \subseteq K^{n}$ we set

$$
I(V):=\{f \in K[\underline{x}] \mid f(\underline{a})=0 \forall \underline{a} \in V\}
$$

the vanishing ideal of V.
Corollary 7.5 (Geometric HNS). If $K=\bar{K}$ and $I \leqslant K[\underline{x}]$, then

$$
I(V(I))=\sqrt{I}
$$

Proof.
$" \supseteq "$ Let $f \in \sqrt{I}$

$$
\begin{aligned}
& \Longrightarrow \exists n: f^{n} \in I \\
& \Longrightarrow \forall \underline{a} \in V(I): f^{n}(\underline{a})=(f(\underline{a}))^{n}=0^{n}=0 \\
& \Longrightarrow f \in I(V(I))
\end{aligned}
$$

$" \subseteq "$ Let $f \notin \sqrt{I}$

$$
\begin{aligned}
& \stackrel{\underline{\underline{7.3}}}{\underline{\Longrightarrow}} \exists \mathfrak{m} \triangleleft \cdot K[\underline{x}], I \subseteq \mathfrak{m}: f \notin \mathfrak{m} \\
& \stackrel{\underline{7.2}}{\Longrightarrow} \exists \underline{a} \in K^{n}: \mathfrak{m}=\left\langle x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right\rangle \not \supset f \\
& \stackrel{I \subseteq \mathfrak{m}}{\Longrightarrow} \forall g \in I: g(\underline{a})=0 \\
& \Longrightarrow \underline{a} \in V(I)
\end{aligned}
$$

Now suppose that $f(\underline{a})=0$. Then $f \in I(\{\underline{a}\}) \supseteq \mathfrak{m}$. Thus, since \boldsymbol{m} is maximal and $f \notin \mathbf{m}$ we have that $K[\underline{x}]=\langle\mathbf{m}, f\rangle \subseteq I(\{a\}) \sharp$, which is a contradiction to $1(\underline{a}) \neq 0$.
Thus $f(\underline{a}) \neq 0$ and $f \notin I(V(I))$.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Geometrical interpretation 7.6. When K is algebraically closed, we have:

- $7.2 \Longrightarrow \mathrm{~m}-\operatorname{Spec}(K[\underline{x}]) \stackrel{1: 1}{\rightleftarrows} K^{n}$
- $7.5 \Longrightarrow$

$$
\begin{aligned}
& \text { \{prime ideals\} } \left.\stackrel{1: 1}{\longleftrightarrow} \text { \{irred. subvarieties of } K^{n}\right\} \\
& \text { \{radical ideals } \left.\} \stackrel{1: 1}{\longleftrightarrow} \text { \{subvarieties of } K^{n}\right\}
\end{aligned}
$$

Corollary 7.7. Let K be a field and let $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash K$. Then:
(a) $\operatorname{dim}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)=n$.
(b) $\operatorname{dim}\left(K\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle\right)=n-1$.

Proof. By Proposition 6.8 we know that for any $g \in K\left[x_{1}, \ldots, x_{n}\right]$ the ring extension

$$
K\left[x_{1}, \ldots, x_{n}\right] /\langle g\rangle \hookrightarrow \bar{K}\left[x_{1}, \ldots, x_{n}\right] /\langle g\rangle
$$

is integral. We thus get

$$
\begin{aligned}
\operatorname{dim}(K[\underline{x}] /\langle g\rangle) & \stackrel{6.17}{=} \operatorname{dim}(\bar{K}[\underline{x}] /\langle g\rangle) \\
& \stackrel{\text { Def. }}{=} \sup \{\operatorname{codim}(\boldsymbol{m} /\langle g\rangle) \mid \boldsymbol{m} \triangleleft \cdot \bar{K}[\underline{x}], g \in \mathfrak{m}\} \\
& \stackrel{7.2}{=} \sup \left\{\operatorname{codim}\left(\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle /\langle g\rangle\right) \mid \underline{a} \in \bar{K}^{n}, g(\underline{a})=0\right\} .
\end{aligned}
$$

However, by Corollary 5.32 and 5.33 we know for $\mathfrak{m}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$

$$
\operatorname{codim}(\mathbf{m} /\langle g\rangle) \stackrel{5.31}{=} \operatorname{dim}(\bar{K}[\underline{x}] \mathbf{m} /\langle g\rangle) \stackrel{5.32 / 5.33}{=} \begin{cases}n, & \text { if } g=0 \\ n-1, & \text { if } g=f\end{cases}
$$

since f is neither a unit, nor a zero-divisor in the localised ring $\bar{K}[\underline{x}] \mathbf{m}$.

B). Noether Normalisation

Definition 7.8.

(a) Let $R \subseteq R^{\prime}$ be a ring extension; $\alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}, n \geq 0$
(1) $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically independent $/ R$

$$
\begin{aligned}
: & \Longleftrightarrow \varphi_{\underline{\alpha}}: R\left[x_{1}, \ldots, x_{n}\right] \longrightarrow R\left[\alpha_{1}, \cdots, \alpha_{n}\right], x_{i} \mapsto a_{i} \text { is an isomorphism } \\
& \Longleftrightarrow \operatorname{ker}\left(\varphi_{\underline{\alpha}}\right)=\{0\} \\
& \Longleftrightarrow \nexists 0 \neq f \in R[\underline{x}]: f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0 \\
& \Longleftrightarrow \forall i=1, \ldots, n: \alpha_{i} \text { is transcendental } / R\left[\alpha_{1}, \ldots, \alpha_{i-1}\right]
\end{aligned}
$$

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

(2) $\operatorname{trdeg}_{R}\left(R^{\prime}\right):=\sup \left\{d \mid \exists \alpha_{1}, \ldots, \alpha_{d} \in R^{\prime}\right.$ alg. indep. $\left./ R\right\}$ is the transcendence degree of R^{\prime} over R.
(b) Let K be a field, R a K-algebra. A finite, injective K-algebra-homomorphism

$$
\varphi: K\left[y_{1}, \ldots, y_{d}\right] \hookrightarrow R
$$

is called a Noether Normalisation (NN) of R.
Note.

$$
\varphi: R \rightarrow R^{\prime} \text { finite } \Longleftrightarrow R^{\prime} \text { is a finitely gen. } \varphi(R) \text {-module }
$$

If φ is injective, then $\varphi(R) \cong R$ and this is equivalent to saying that R^{\prime} is a finitely generated R-module

Theorem $7.9(\mathrm{NN})$. Let $|K|=\infty$ and R a finitely generated K-algebra. Then:
$\exists \beta_{1}, \ldots, \beta_{d} \in R$ algebr. indep \cdot / K, such that

$$
K\left[\beta_{1}, \ldots, \beta_{d}\right] \stackrel{\text { finite! }}{\longrightarrow} R
$$

is a NN. More precisely:
If $R=K\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, then
such that $\underline{\beta}:=M \underline{\alpha}$ satisfies that
(a) $\beta_{1}, \ldots, \beta_{d} \in R$ are algebraically independent ${ }_{/ K}$, and
(b) β_{i} integral $_{/ K\left[\beta_{1}, \ldots, \beta_{i-1}\right]}$ for all $i>d$.

In particular, $K\left[\beta_{1}, \ldots, \beta_{n}\right]=R$ and $\operatorname{dim}(R)=d$.
Note. The main statement follows from the 'More precisely'-part, since:

- $\beta_{1}, \ldots, \beta_{d}$ algebr. indep. $/ K \Longrightarrow$ the inclusion $K\left[\beta_{1}, \ldots, \beta_{d}\right] \hookrightarrow R$ is injective
- $\underline{\beta}=M \underline{\alpha} \Longrightarrow R=K\left[\beta_{1}, \ldots, \beta_{n}\right]$ (since $\alpha_{n}=\beta_{n}, \alpha_{n-1}=\beta_{n-1}-a_{n-1, n} \beta_{n}$, etc...)
- β_{i} integral $_{/ K\left[\beta_{1}, \ldots, \beta_{i-1}\right]}$ yields finiteness of the inclusion: $R=K\left[\beta_{1}, \ldots, \beta_{n}\right]=$ $K\left[\beta_{1}, \ldots, \beta_{n-1}\right]\left[\beta_{n}\right]$. Since β_{n} is algebraic $_{/ K\left[\beta_{1}, \ldots, \beta_{n-1}\right]}, R$ is finite over $K\left[\beta_{1}, \ldots, \beta_{n-1}\right]$ by 6.4(c); induction and 6.4(b) yields that R is finite $/ K\left[\beta_{1}, \ldots, \beta_{d}\right]$.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Proof. Postponed to 7.14

Remark 7.10.

(a) We will see later, that $\operatorname{trdeg}_{K}(R)=\operatorname{dim} R$, the Krull dimension of R.
(b) $\underline{\beta}=M \underline{\alpha}$ implies that β_{i} is a linear combination of the α_{j}. The main statement also holds for $|K|<\infty$, but then we cannot choose the β_{i} as linear combinations of the α_{j}.
(c) If we identify M with a vector in K^{m}, where $m=\frac{(n-d)(n+d-1)}{2}$ is the number of *-elements, there exists a Zariski-open subset $U \subseteq K^{m}$, such that any $M \in U$ is a suitable coordinate change for 7.9, i.e. the non-suitable ones satisfy a polynomial relationship $\left(\exists f_{1}, \ldots, f_{m} \in K\left[z_{1}, \ldots, z_{m}\right]\right.$ such that $p \in U \Longleftrightarrow f_{i}(p) \neq 0$ for some i).
(d) If K is algebraically closed and R is an integral domain we can choose $\beta_{1}, \ldots, \beta_{d}$ in such a way that the field extension $K\left(\beta_{1}, \ldots, \beta_{d}\right) \subseteq \operatorname{Quot}(R)$ is separable.

Example 7.11.

(a) $K[y+1] \subseteq K[x, y] /\langle x y\rangle$ is not finite, since \bar{x} is not integral ${ }_{/ K[\overline{y+1}]}$. Suppose that

$$
\begin{aligned}
& x^{k}+\sum_{i=0}^{k-1} \underbrace{a_{i}}_{\in K[y+1]} x^{i} \in\langle x y\rangle \\
\Longrightarrow & x^{k}+\sum_{i=1}^{k-1} b_{i} x^{i}+\underbrace{a_{0}}_{\in K[y+1]} \in\langle x y\rangle \text { with } b_{i}=\text { const.term of } a_{i} \\
\Longrightarrow & a_{0}, b_{i}=0 \forall i \\
\Longrightarrow & x^{k} \in\langle x y\rangle \psi
\end{aligned}
$$

(b) $K[x+y \subseteq K[x, y] /\langle x y\rangle$ is finite, thus a NN.

$$
\begin{aligned}
& p=z^{2}-(\overline{x+y}) z \\
\Longrightarrow & p(\bar{x})=p(\bar{y})=0 \\
\Longrightarrow & \bar{x}, \bar{y} \text { integral }_{/ K[\overline{x+y}]}, \text { hence finite }
\end{aligned}
$$

(c) (Geometric interpretation) Let $V=V(I) \subseteq K^{n}, I \preccurlyeq K[\underline{x}]$. Then

$$
\exists \text { a linear subspace } H=\left\langle\tilde{M}_{1}^{t}, \ldots, \tilde{M}_{d}^{t}\right\rangle \subseteq K^{n}
$$

of dimension d, such that the projection of V to H has finite fibers. The idea is, that the inclusion $K\left[y_{1}, \ldots, y_{d}\right] \hookrightarrow K[\underline{x}] / I$ corresponds inversely to the projection $K^{d}=H \longleftarrow V(I)$.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Recall that for $M=\left(\begin{array}{cc}I_{n} & A \\ 0 & B\end{array}\right)$ we have $M^{-1}=\left(\begin{array}{cc}I_{n} & -A B^{-1} \\ 0 & B^{-1}\end{array}\right)$ and if we set $\tilde{M}:=\binom{-A B^{-1}}{B^{-1}}$, then $H=\operatorname{ker}\left(\tilde{M}^{t}\right)$.
(d) While NN corresponds to projection, normalisation corresponds to parametrisation: Let $I=\left\langle y^{2}-x z, y x^{2}-z^{2}, x^{3}-y z\right\rangle \preccurlyeq K[x, y, z]$, then consider

$$
R:=K[x, y, z] / I \hookrightarrow K[t], x \mapsto t^{3}, y \mapsto t^{4}, z \mapsto t^{5}
$$

Then $R \cong K\left[t^{3}, t^{4}, t^{5}\right]$ and the map $t \mapsto\left(t^{3}, t^{4}, t^{5}\right)$ is a parametrisation of the curve $V(I)$.

Lemma 7.12. Let $|K|=\infty$ and $0 \neq f \in K\left[x_{1}, \ldots, x_{n}\right]$. Then:

$$
\exists a_{1}, \ldots, a_{n} \in K \backslash\{0\}: f(\underline{a}) \neq 0
$$

Note. If $K=\mathbb{Z} / 2 \mathbb{Z}$ (i.e. finite), $f=(z-1) z \in K[z]$ vanishes everywhere.
Moreover, if f is homogenous, then we may assume that $a_{n}=1$.
Proof. We do an induction on n

- $n=1:|\{a \in K \mid f(a)=0\}| \leq \operatorname{deg}(f)<\infty$. Since $|K|=\infty, \exists a \in K \backslash\{0\}$: $f(a) \neq 0$
- $n-1 \rightarrow n: f=\sum_{i=0}^{k} f_{i} x_{n}^{i}$ with $f_{i} \in K\left[x_{1}, \ldots, x_{n-1}\right]$ and $f_{k} \neq 0$. Then by induction there exist $a_{1}, \ldots, a_{n-1} \in K \backslash\{0\}$, such that $f_{k}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$.

$$
\begin{aligned}
& \Longrightarrow 0 \neq f\left(a_{1}, \ldots, a_{n-1}, x_{n}\right) \in K\left[x_{n}\right] \\
& \xlongequal{n=1} \exists a_{n} \in K \backslash\{0\}: f\left(a_{1}, \ldots, a_{n}\right) \neq 0
\end{aligned}
$$

Moreover, if f is homogenous of degree k, then

$$
0 \neq f(\underline{a})=a_{n}^{k} f\left(\frac{a_{1}}{a_{n}}, \ldots, \frac{a_{n}}{a_{n}}=1\right)
$$

Lemma 7.13. Let $0 \neq f=f_{0}+\ldots+f_{k} \in K[\underline{x}]$, f_{i} homogenous of degree i and $a_{1}, \ldots, a_{n-1} \in K$, such that $f_{k}\left(a_{1}, \ldots a_{n-1}, 1\right)=1$. Now consider the map

$$
\psi_{\underline{a}}: K[\underline{x}] \rightarrow K[\underline{x}]: x_{i} \mapsto \begin{cases}x_{n} & , i=n \\ x_{i}+a_{i} x_{n} & , i<n\end{cases}
$$

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

i.e. the coordinate change by $M=\left(\begin{array}{cccc}1 & 0 & 0 & a_{1} \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & a_{n-1} \\ 0 & \ldots & 0 & 1\end{array}\right)^{t}$. Then:

$$
\psi_{\underline{a}}(f)=x_{n}^{k}+\sum_{i=0}^{k-1} c_{i} x_{n}^{i}, c_{i} \in K\left[x_{1}, \ldots, x_{n-1}\right]
$$

is monic in x_{n}.

Proof.
Let

$$
\begin{aligned}
& \psi_{\underline{a}}\left(f_{k}\right)=\sum_{|\alpha|=0}^{k} b_{\alpha} x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n-1}^{\alpha_{n-1}} \cdot x_{n}^{k-|\alpha|}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \\
\Longrightarrow & f_{k}=\sum_{|\alpha|=0}^{k} b_{\alpha}\left(x_{1}-a_{1} x_{n}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x_{n-1}-a_{n-1} x_{n}\right)^{\alpha_{n-1}} \cdot x_{n}^{|\alpha|-k} \\
\Longrightarrow & b_{(0, \ldots, 0)}=f_{k}\left(a_{1}, \ldots, a_{n-1}, 1\right)=1 \\
\Longrightarrow & \psi_{\underline{a}}\left(f_{k}\right)=x_{n}^{k}+\sum_{|\alpha|=1}^{k} b_{\alpha} x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n-1}^{\alpha_{n-1}} \cdot \underbrace{x_{n}^{k-|\alpha|}}_{k-|\alpha|<k!} \\
\Longrightarrow & \psi_{\underline{a}}(f)=\psi_{\underline{a}}\left(f_{k}\right)+\ldots+\underbrace{\psi_{\underline{a}}\left(f_{0}\right)}_{\operatorname{deg}<k}=x_{n}^{k}+\sum_{i=0}^{k-1} c_{i} x_{n}^{i}, c_{i} \in K\left[x_{1}, \ldots, x_{n-1}\right]
\end{aligned}
$$

Proof 7.14 (of 7.9).
We do the proof by induction on n, where $R=K\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.
If $n=1$ we set $M=(1)$ and $\beta_{1}=\alpha_{1}$. If α_{1} is trancendental over K we are done with $d=1$. Otherwise, there is a monic polynomial $0 \neq p \in K\left[x_{1}\right]$ such that $p\left(\alpha_{1}\right)=0$, so that indeed α_{1} is integral over K. Thus we are done with $d=0$.

Let now $n>1$. If $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically independent, we are done with $M=$ $I_{n \times n}$ and $d=n$. Otherwise there exists an $f=f_{0}+\ldots+f_{k} \in K\left[x_{1}, \ldots, x_{n}\right]$ with $f_{k} \neq 0$, f_{i} homogenous of degree i, such that

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

Applying 7.12 to f_{k} yields:

$$
\exists a_{1}, \ldots, a_{k-1} \in K \backslash\{0\}: \xi:=f_{k}\left(a_{1}, \ldots, a_{k-1}, 1\right) \neq 0
$$

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Dividing f_{k} by ξ, we may assume that $f_{k}\left(a_{1}, \ldots, a_{k-1}, 1\right)=1$.
Applying 7.13 yields that $p=\psi_{\underline{a}}(f)=x_{n}^{k}+\sum_{j=0}^{k-1} c_{j} x_{n}^{j} \in K[\underline{x}]$ satisfies

$$
p\left(\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}\right)=f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

where

$$
\underline{\beta^{\prime}}=\underbrace{\left(\begin{array}{cc}
& -a_{1} \\
I_{n-1} & \vdots \\
& -a_{n-1} \\
0 & 1
\end{array}\right)}_{=: M^{\prime}} \underline{\alpha}
$$

Thus $\beta_{n}^{\prime}=\alpha_{n}$ is integral over $K\left[\beta_{1}^{\prime}, \ldots, \beta_{n-1}^{\prime}\right]$.
Applying induction to $K\left[\beta_{1}^{\prime}, \ldots, \beta_{n-1}^{\prime}\right]$ there exists an $M^{\prime \prime} \in \operatorname{Mat}(n-1 \times n-1, K)$ as in 7.9, such that

$$
\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n-1}
\end{array}\right)=M^{\prime \prime}\left(\begin{array}{c}
\beta_{1}^{\prime} \\
\vdots \\
\beta_{n-1}^{\prime}
\end{array}\right)
$$

satisfies $\beta_{1}, \ldots, \beta_{d}$ algebraically indep. $/ K$ and β_{i} is integral over $K\left[\beta_{1}, \ldots, \beta_{i-1}\right] \forall i>d$. Set $M:=\left(\begin{array}{cc}M^{\prime \prime} & 0 \\ 0 & 1\end{array}\right) \cdot M^{\prime} \in \operatorname{Mat}(n \times n, K)$, which is of suitable form and then

$$
M \underline{\alpha}=\left(\begin{array}{cc}
M^{\prime \prime} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{c}
\beta_{1}^{\prime} \\
\vdots \\
\beta_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}=\beta_{n}^{\prime}=\alpha_{n}
\end{array}\right)
$$

Note. M is a product of matrices where just one column is not the unit vector and these entries satisfy a polynomial relation of the form $f(a) \neq 0$. Thus the entries of a non-suitable matrix form a Zariski-closed subset!

Proof of Remark 7.10 d. We want to show that we may choose $\beta_{1}, \ldots, \beta_{d}$ such that Quot (R) is separable over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$, if K is algebraically closed.
Since in characteristic zero every field extension is separable we may assume that $\operatorname{char}(K)=p>0$.

In the proof of Theorem 7.9 we can assume that the polynomial f is irreducible since otherwise we can replace it by some irreducible factor vanishing at $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Suppose now that f is separable in some variable, w.l.o.g. in x_{n}, then $\operatorname{Quot}(R)=$ $K\left(\beta_{1}, \ldots, \beta_{n}\right)$ is separable over $K\left(\beta_{1}, \ldots, \beta_{n-1}\right)$ and continuing inductively as above we find that $\operatorname{Quot}(R)$ is separable over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$ as a tower of separable extensions.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

It thus remains to show that f cannot be inseparable in all variables. For this we recall that f is inseparable in x_{i} if and only if $f \in K\left[x_{1}, \ldots, x_{i}^{p}, \ldots, x_{n}\right]$. Thus f is inseparable in all variables if and only if there is some polynomial $g=\sum_{\gamma} c_{\gamma} \cdot \underline{x}^{\gamma} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f=g\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)
$$

We now choose a p-th root $\sqrt[p]{c_{\gamma}} \in K$ in the algebraically closed field K for each coefficient c_{γ} of g and set

$$
h=\sum_{\gamma} \sqrt[p]{c_{\gamma}} \cdot \underline{x}^{\gamma} \in K\left[x_{1}, \ldots, x_{n}\right]
$$

then

$$
h^{p}=g\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)=f
$$

since in characteristic p we have $(a+b)^{p}=a^{p}+b^{p}$. However, this contradicts the irreducibility of f.

Lemma 7.15. Let R be an $I D$ and let $K[\underline{y}] \hookrightarrow R$ be integral. Suppose moreover that $Q, \tilde{Q} \in \operatorname{Spec}(R)$ s.t. $Q \subsetneq \tilde{Q}$ and there is no $Q^{\prime} \in \operatorname{Spec}(R)$ s.t. $Q \subsetneq Q^{\prime} \subsetneq \tilde{Q}$. Then $Q^{c} \subsetneq \tilde{Q}^{c}$ and there is no $\stackrel{P}{P} \in \operatorname{Spec}(K[y])$ s.t. $Q^{c} \subsetneq P \subsetneq \tilde{Q}^{c}$.

Proof. Since R is integral over $K[\underline{y}]$ we deduce from Corollary 6.13 that $Q^{c} \subsetneq \tilde{Q}^{c}$, which proves the first part.
Suppose now there is a prime ideal P in $K[\underline{y}]$ strictly between Q^{c} and \tilde{Q}^{c}. By Proposition 6.8 we know that the extension

$$
\begin{equation*}
K[\underline{y}] / Q^{c} \hookrightarrow R / Q \tag{7.1}
\end{equation*}
$$

is integral again. Applying Noether Normalisation 7.9 to the K-algebra $K[\underline{y}] / Q^{c}$ we get a finite extension

$$
\begin{equation*}
K[\underline{z}] \hookrightarrow K[\underline{y}] / Q^{c} \tag{7.2}
\end{equation*}
$$

and Corollary 6.13 implies the strict inclusion of prime ideals

$$
\begin{equation*}
0=Q^{c} / Q^{c} \cap K[\underline{z}] \subsetneq P / Q^{c} \cap K[\underline{z}] \subsetneq \tilde{Q}^{c} / Q^{c} \cap K[\underline{z}] \tag{7.3}
\end{equation*}
$$

Combining the integral extensions in (B) and (7.2) we get an integral extension

$$
K[\underline{z}] \hookrightarrow R / Q
$$

and the last prime ideal in (7.3) coincides with the contraction $\tilde{Q} / Q \cap K[\underline{z}]$ under this extension. Applying Going-Down 6.19 we therefore find a prime ideal Q^{\prime} / Q in R / Q with

$$
Q^{\prime} / Q \subsetneq Q / Q
$$

and $Q^{\prime} / Q \cap K[\underline{z}]=P / Q^{c} \cap K[\underline{z}] \neq 0$, which then implies

$$
Q \subsetneq Q^{\prime} \subsetneq \tilde{Q}
$$

in contradiction to our assumption.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Definition 7.16. A ring R is called catenarian $: \Longleftrightarrow$ between any two given prime ideals $Q \subseteq Q^{\prime}$ all maximal chains of primes ideals have the same finite length.

Theorem 7.17 (strong form of 5.31).

$$
P \in \operatorname{Spec}(K[\underline{x}]) \Longrightarrow K[\underline{x}] / P \text { is catenarian with } \operatorname{dim}(K[\underline{x}] / P)=n-\operatorname{codim}(P)
$$

In particular, all maximal chains of prime ideals in $K[\underline{x}] / P$ have the same length.

Proof. It suffices to prove the "in particular" part and the dimesion statement, and for this we consider two cases:

- $(P=0)$: We do an induction on n (where $\left.\underline{x}=\left(x_{1}, \ldots, x_{n}\right)\right)$
$-n=0: \checkmark$
$-n-1 \rightarrow n$: Since $\operatorname{dim}(K[\underline{x}])=n$ by Corollary 7.7 each maximal chain of prime ideals in R is finite.
So let $0=P_{0} \subsetneq \ldots \subsetneq P_{m} \triangleleft \cdot K[\underline{x}]$ be any maximal chain of prime ideals. Choose any $0 \neq f \in P_{1}$ irreducible. Since the chain is maximal, we necessarily must have $P_{1}=\langle f\rangle$.

$$
\Longrightarrow \overline{0}=P_{1} /\langle f\rangle \subsetneq \ldots \subsetneq P_{m} /\langle f\rangle
$$

is a maximal chain of prime ideals in $K[\underline{x}] /\langle f\rangle$. Applying 7.20 and 7.9 yields a NN

$$
R=K\left[y_{1}, \ldots, y_{n-1}\right] \stackrel{\text { finite }}{\hookrightarrow} K[\underline{x}] /\langle f\rangle
$$

By 7.15 we get, that

$$
R \cap P_{1} /\langle f\rangle \subsetneq \ldots \subsetneq R \cap P_{m} /\langle f\rangle
$$

is a maximal chain in R. By induction we derive

$$
m=\operatorname{dim}(R)+1=n
$$

- $(P \neq 0)$: Let $0=\overline{P_{0}} \subsetneq \ldots \subsetneq \overline{P_{m}}$ be a maximal chain of prime ideals in $K[\underline{x}] / P$

$$
\begin{aligned}
& \Longrightarrow \exists P_{0} \subsetneq \ldots \subsetneq P_{m} \text {, such that } \overline{P_{i}}=P_{i} / P \\
& \Longrightarrow \exists \text { chain } 0=L_{0} \subsetneq \ldots \subsetneq L_{k}=P=P_{0} \subsetneq \ldots \subsetneq P_{m}
\end{aligned}
$$

which is a chain in R and where $k=\operatorname{codim}(P)$. By applying the first case we derive $m=n-k$.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Corollary 7.18. If R is a noetherian ring where all maximal chains of prime ideals have the same length and let $f \in R \backslash R^{*}$ a non-zero divisor, then

$$
\operatorname{dim}(R /\langle f\rangle)=\operatorname{dim}(R)-1
$$

In particular, if $P \in \operatorname{Spec}(K[\underline{x}])$ and $f \in K[\underline{x}] \backslash K^{*}$ with $f \notin P$ then

$$
\operatorname{dim}(K[\underline{x}] /\langle f, P\rangle)=\operatorname{dim}(K[\underline{x}] / P)-1=n-\operatorname{codim}(P)-1 .
$$

Proof. Consider any chain of prime ideals $P_{1} \subsetneq \ldots \subsetneq P_{k}$ in R where P_{1} is minimal over f. By Corollary 5.28 the codimension of P_{1} is one and thus there is a prime ideal P_{0} strictly contained in P_{1}. By the one-to-one correspondence of prime ideals we see that $\operatorname{dim}(R /\langle f\rangle) \leq \operatorname{dim}(R)-1$. If the left hand side is infinite the statement holds. Otherwise we may assume that the sequence $P_{1} \subsetneq \ldots \subsetneq P_{k}$ cannot be prolonged, i.e. $\operatorname{dim}(R /\langle f\rangle)=k-1$. Since $\operatorname{codim}\left(P_{1}\right)=1$ also the sequence $P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{k}$ cannot be prolonged, and by the assumption on R this implies that $\operatorname{dim}(R)=k$ as claimed. The in particular part follows from Theorem 7.17,

Corollary 7.19.

- $\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)=\bigcup_{i=0}^{n} X_{i}$, where

$$
X_{i}:=\{P \in \operatorname{Spec}(K[\underline{x}]) \mid \operatorname{codim}(P)=i\}
$$

- $X_{n}=\mathbf{m}-\operatorname{Spec}(K[\underline{x}]) \stackrel{\text { if }}{\stackrel{K=\bar{K}}{=}}\left\{\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle\right\}$
- $X_{1}=\{\langle f\rangle \mid f$ is irreducible $\}$
- $X_{0}=\{\langle 0\rangle\}$

In particular:

$$
\operatorname{Spec}(\mathbb{C}[x, y])=\{\langle x-a, y-b\rangle\} \dot{\cup}\{\langle f\rangle \mid f \text { irreducible }\} \dot{\cup}\{\langle 0\rangle\}
$$

Note. In general $\operatorname{codim}(P)=2 \nRightarrow \exists f, g: P=\langle f, g\rangle$

Remark 7.20.

(a) If $K \subseteq L \subseteq M$ are field extensions and M is algebraic over L, then

$$
\operatorname{trdeg}_{K}(L)=\operatorname{trdeg}_{K}(M)
$$

(b) If $I \unlhd K\left[x_{1}, \ldots, x_{n}\right]$, then $\operatorname{trdeg}_{K}\left(K\left[x_{1}, \ldots, x_{n}\right] / I\right) \leq n$.
(c) $\operatorname{trdeg}_{K}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)=\operatorname{trdeg}_{K}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)=n$
(d) Let R be a finitely generated K-algebra which is an integral domain. Then:

$$
\operatorname{trdeg}_{K}(R)=\operatorname{trdeg}_{K}(\operatorname{Quot}(R))
$$

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

Proof. Exercise
Corollary 7.21. If R is a finitely generated K-algebra, then

$$
\operatorname{dim}(R)=\operatorname{trdeg}_{K}(R)
$$

Proof. By Theorem 7.9 we have $\beta_{1}, \ldots, \beta_{d}$ in R which are algebraically independent over K where $d=\operatorname{dim}(R)$, so that

$$
\operatorname{trdeg}_{K}(R) \geq \operatorname{dim}(R)
$$

It remains to show that $\operatorname{dim}(R) \geq \operatorname{trdeg}_{K}(R)$.
For that we may assume that $R=K[\underline{x}] / I$ for some ideal I. By Remark 7.20 we know that

$$
m=\operatorname{trdeg}_{K}(R) \leq n<\infty
$$

We will do the proof in two steps:

1) Reduce to the case where I is a prime ideal.
2) Prove the claim when I is prime.

Let $\operatorname{Min}(I)=\left\{P_{1}, \ldots, P_{k}\right\}$ be the minimal associated prime ideals of I, then $\sqrt{I}=P_{1} \cap$ $\ldots \cap P_{k}$ is a minimal primary decomposition of the radical of I. Choose $a_{1}, \ldots, a_{m} \in$ $K[\underline{x}]$ such that their residue classes in R are algebraically independent over K.
Suppose that for each $i=1, \ldots, k$ the residue classes of the a_{j} in $K[\underline{x}] / P_{i}$ are algebraically dependent over K. Then there exist non-zero polynomials $f_{i} \in K\left[z_{1}, \ldots, z_{m}\right]$ such that

$$
f_{i}\left(a_{1}, \ldots, a_{m}\right) \in P_{i}
$$

and $0 \neq f=f_{1} \cdots f_{k} \in K\left[z_{1}, \ldots, z_{m}\right]$ satisfies

$$
f\left(a_{1}, \ldots, a_{m}\right) \in P_{1} \cdots P_{k} \subseteq P_{1} \cap \ldots \cap P_{k}=\sqrt{I}
$$

But then there is an integer $l \geq 1$ such that

$$
f^{l}\left(a_{1}, \ldots, a_{m}\right) \in I
$$

in contradiction to the fact that the a_{i} are algebraically independent over K modulo I. Thus there is some i such that

$$
\operatorname{trdeg}_{K}(R)=m \leq \operatorname{trdeg}_{K}\left(K[\underline{x}] / P_{i}\right)
$$

and

$$
\operatorname{dim}\left(K[\underline{x}] / P_{i}\right) \leq \operatorname{dim}(R)
$$

It thus suffices to show $\operatorname{trdeg}_{K}\left(K[\underline{x}] / P_{i}\right) \leq \operatorname{dim}\left(K[\underline{x}] / P_{i}\right)$. In other words, we may assume that I is a prime ideal.

7. Hilbert's Nullstellensatz, Noether Normalisation, Krull Dimension

In that case R is an integral domain and by Theorem 7.9 we get a finite Noether normalisation

$$
K\left[y_{1}, \ldots, y_{d}\right] \cong K\left[\beta_{1}, \ldots, \beta_{d}\right] \subseteq R
$$

where $d=\operatorname{dim}(R)$. This induces an inclusion of the quotient fields

$$
K\left(y_{1}, \ldots, y_{d}\right) \cong K\left(\beta_{1}, \ldots, \beta_{d}\right) \subseteq \operatorname{Quot}(R)
$$

and we claim that this inclusion is algebraic. Now, if $\frac{a}{b} \in \operatorname{Quot}(R)$ then it suffices to show that a and $\frac{1}{b}$ are algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$ by Corollary 6.4 (e). Since a and b are elements of R, a and b are integral over $K\left[\beta_{1}, \ldots, \beta_{d}\right]$. Then a is also algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$, and b satisfies a relation of the form

$$
\sum_{j=0}^{m} c_{j} \cdot b^{j}=0
$$

with $c_{j} \in K\left[\beta_{1}, \ldots, \beta_{d}\right]$. Multiplying this equation by $\frac{1}{b^{m}}$ we get

$$
\sum_{j=0}^{m} c_{m-j} \cdot\left(\frac{1}{b}\right)^{j}=0
$$

which shows that $\frac{1}{b}$ is also algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$.
Since $\operatorname{Quot}(R)$ is algebraic over $K\left(\beta_{1}, \ldots, \beta_{d}\right)$ we have

$$
\begin{aligned}
\operatorname{trdeg}_{K}(R)^{\frac{7.20}{=}} \operatorname{trdeg}_{K}(\operatorname{Quot}(R))^{\frac{7.20}{=}} & \operatorname{trdeg}_{K}\left(K\left(\beta_{1}, \ldots, \beta_{d}\right)\right)= \\
& \operatorname{trdeg}_{K}\left(K\left(y_{1}, \ldots, y_{d}\right)\right)^{\frac{7.20}{=}} d=\operatorname{dim}(R)
\end{aligned}
$$

Corollary 7.22. In particular, if $P \in \operatorname{Spec}(K[\underline{x}])$ is a prime ideal and $R=K[\underline{x}] / P$, then

$$
\operatorname{dim}(R)=\operatorname{trdeg}_{K}(\operatorname{Quot}(R))
$$

Proof. This follows right away from Corollary 7.21 and Remark 7.20 b..

8. Valuation Rings and Dedekind Domains

A). Valuation Rings

Definition 8.1.

(a) Let $(G,+)$ be an abelian group, \leq a total ordering on G. We call $(G,+, \leq)$ a totally ordered group

$$
: \Longleftrightarrow\left(g \leq g^{\prime}, h \in G \Longrightarrow g+h \leq g^{\prime}+h\right)
$$

(b) Let K be a field, $(G,+, \leq)$ a totally ordered group. A valuation of K in G is a group homomorphism $\nu:\left(K^{*}, \cdot\right) \rightarrow(G,+)$, such that

$$
\nu(a+b) \geq \min \{\nu(a), \nu(b)\} \forall a, b \in K^{*} \text { with } a+b \neq 0
$$

Notation:

$$
R_{\nu}:=\left\{a \in K^{*} \mid \nu(a) \geq 0\right\} \cup\{0\} \leq K
$$

is a subring of K and called the valuation ring (VR) of K with respect to ν.
Note.

- We have to prove, that R_{ν} is indeed a subring:
$-\nu(1)=\nu(1 \cdot 1)=\nu(1)+\nu(1) \Longrightarrow \nu(1)=0 \Longrightarrow 1 \in R_{\nu}$
$-\nu(1)=\nu(-1)+\nu(-1)=2 \nu(-1) \Longrightarrow \nu(-1)=0$
$-\nu(-a)=\nu((-1) \cdot a)=\nu(-1)+\nu(a)=\nu(a) \geq 0 \Longrightarrow-a \in R_{\nu}$
- In G, no element $g \neq e$ can have finite order, since otherwise

$$
e \lesseqgtr g \lesseqgtr \ldots \lesseqgtr k g=e_{\text {亿 }}
$$

or

$$
e \ngtr g \nsucceq \ldots \ngtr k g=e \text { z }
$$

- $K=\operatorname{Quot}\left(R_{\nu}\right)$

Proof.
" \supseteq ": \checkmark
$" \subseteq$ ": Let $a \in K \backslash R_{\nu}$

$$
\Longrightarrow \nu\left(\frac{1}{a}\right)=-\underbrace{\nu(a)}_{<0}>0
$$

$$
\text { Thus } \frac{1}{a} \in R_{\nu} \Longrightarrow a=\frac{1}{\frac{1}{a}} \in \operatorname{Quot}\left(R_{\nu}\right)
$$

- $a \in K^{*} \Longrightarrow a \in R_{\nu}$ or $\frac{1}{a} \in R_{\nu}$

If $(G,+, \leq)=(\mathbb{Z},+, \leq)$ and ν is surjective, then we call ν a discrete valuation and R_{ν} the discrete valuation ring (DVR) of ν.
(c) An ID R is called a valuation ring (VR) $: \Longleftrightarrow \forall 0 \neq a \in \operatorname{Quot}(R): a \in R$ or $\frac{1}{a} \in R$.
A VR R is called discrete (DVR) $: \Longleftrightarrow R$ is noetherian, but not a field.

Example 8.2.

(a) $(\mathbb{R},+, \leq)$ is a totally ordered group with respect to the usual ordering and so is every subgroup
(b) Every field is a VR
(c) R ID, $K=\operatorname{Quot}(R),(G,+, \leq)$ a tot. ordered group and $v: R \backslash\{0\} \rightarrow G$ a map, such that $v(a b)=v(a)+v(b)$ and $v(a+b) \geq \min \{v(a), v(b)\}$ if $a, b, a+b \neq 0$. Then

$$
\nu: K^{*} \rightarrow G: \frac{a}{b} \mapsto v(a)-v(b)
$$

is a valuation of K.
Proof.

$$
\begin{aligned}
\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}} & \Longrightarrow a b^{\prime}=a^{\prime} b \\
& \Longrightarrow v(a)+v\left(b^{\prime}\right)=v\left(a^{\prime}\right)+v(b)
\end{aligned}
$$

Hence ν is welldefined. Moreover,

$$
\begin{aligned}
\nu\left(\frac{a}{b} \cdot \frac{a^{\prime}}{b^{\prime}}\right) & =v\left(a a^{\prime}\right)-v\left(b b^{\prime}\right) \\
& =v(a)+v\left(a^{\prime}\right)-v(b)-v\left(b^{\prime}\right) \\
& =\nu\left(\frac{a}{b}\right)+\nu\left(\frac{a^{\prime}}{b^{\prime}}\right)
\end{aligned}
$$

8. Valuation Rings and Dedekind Domains

and

$$
\begin{aligned}
\nu\left(\frac{a}{b}+\frac{a^{\prime}}{b^{\prime}}\right) & =\nu\left(\frac{a b^{\prime}+a^{\prime} b}{b b^{\prime}}\right) \\
& =v\left(a b^{\prime}+a^{\prime} b\right)-v\left(b b^{\prime}\right) \\
& \geq \min \left\{v\left(a b^{\prime}\right), v\left(a^{\prime} b\right)\right\}-v\left(b b^{\prime}\right) \\
& =\min \left\{v(a)+v\left(b^{\prime}\right)-v(b)-v\left(b^{\prime}\right), v\left(a^{\prime}\right)+v(b)-v(b)-v\left(b^{\prime}\right)\right\} \\
& =\min \left\{\nu\left(\frac{a}{b}\right), \nu\left(\frac{a^{\prime}}{b^{\prime}}\right)\right\}
\end{aligned}
$$

(d) R UFD, $K=\operatorname{Quot}(R), p \in R$ prime. Let

$$
v: R \backslash\{0\} \rightarrow \mathbb{Z}: a \mapsto n_{a} \text {, where } a=b \cdot p^{n_{a}}, p \nmid b
$$

Then

$$
\begin{aligned}
v\left(a \cdot a^{\prime}\right) & =v\left(b p^{n_{a}}, b^{\prime} p^{n_{a^{\prime}}}\right) \\
& =v\left(b b^{\prime} p^{n_{a} n_{a^{\prime}}}\right) \\
& =n_{a}+n_{a^{\prime}}=v(a)+v\left(a^{\prime}\right) \\
v\left(a+a^{\prime}\right) & =v\left(b p^{n_{a}}+b^{\prime} p^{n_{a^{\prime}}}\right) \\
& =v\left(\left(b+b^{\prime} p^{n_{a}-n_{a^{\prime}}}\right) p^{n_{a^{\prime}}}\right)\left(\operatorname{wlog} n_{a} \geq n_{a^{\prime}}\right) \\
& \geq n_{a^{\prime}}=\min \left\{v(a), v\left(a^{\prime}\right)\right\}
\end{aligned}
$$

Hence, by applying (c) we know that

$$
\nu: K^{*} \rightarrow \mathbb{Z}, \frac{a}{b} \mapsto n_{a}-n_{b}
$$

is a discrete valuation on K and

$$
R_{\nu}=\left\{\left.\frac{a}{b} \right\rvert\, n_{a} \geq n_{b}\right\}=\left\{\left.\frac{a}{b} \right\rvert\, p \nmid b\right\}=R_{\langle p\rangle}
$$

is its DVR. Examples for this are:
(1) $R=\mathbb{Z}, K=\mathbb{Q}, p$ prime number $\Longrightarrow R_{\nu}=\mathbb{Z}_{\langle p\rangle}$
(2) $R=k[\underline{x}], K=k(\underline{x}), p \in R$ irreducible. Then $R_{\nu}=k[\underline{x}]_{\langle p\rangle}$ is a DVR.

Note. $\frac{1}{a} \in K \Longrightarrow \begin{cases}p \mid a & \Longrightarrow a=\left(\frac{1}{a}\right)^{-1} \in R_{\nu} \\ p \nmid a & \Longrightarrow \frac{1}{a} \in R_{\nu}\end{cases}$

Proposition 8.3.

An ID R is a $V R \Longleftrightarrow R=R_{\nu}$ for some valuation ν

Proof.

- "œ": $R_{\nu} \subseteq K=\operatorname{Quot}\left(R_{\nu}\right)$. Let $0 \neq a \in K$. Then, as we noticed in the definition: $a \in R_{\nu}$ or $\frac{1}{a} \in R_{\nu}$. Hence R is a VR.
- " $\Longrightarrow ":$ Let $K:=\operatorname{Quot}(R)$. Then

$$
G=K^{*} / R^{*}
$$

is an abelian group. Define

$$
\bar{a} \geq \bar{b}: \Longleftrightarrow \frac{a}{b} \in R
$$

This is well-defined: If $\bar{a}=\overline{a^{\prime}}$ and $\bar{b}=\overline{b^{\prime}}$ there exist $g, h \in R^{*}$, such that $a^{\prime}=g a, b^{\prime}=h b$ Thus

$$
\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}} \cdot \underbrace{\frac{g}{h}}_{\in R^{*}} \Longrightarrow \frac{a}{b} \in R \Longleftrightarrow \frac{a^{\prime}}{b^{\prime}} \in R
$$

Since R is a VR we know that either $\frac{a}{b} \in R$ or $\frac{b}{a} \in R$, hence " \geq " is a total ordering and $\bar{a} \cdot \bar{c} \geq \bar{b} \cdot \bar{c}$ for $\bar{a} \geq \bar{b}, \bar{c} \in G$. Hence (G, \cdot, \geq) is a totally ordered group.
We define

$$
\nu: K^{*} \rightarrow G: a \mapsto \bar{a}
$$

Then ν is obviously a group homomorphism. Moreover:

$$
\begin{aligned}
\bar{a} \geq \bar{b} & \Longrightarrow \frac{a}{b} \in R \\
& \Longrightarrow 1+\frac{a}{b}=\frac{a+b}{b} \in R \\
& \Longrightarrow \nu(a+b)=\overline{a+b} \geq \bar{b}=\min \{\nu(a), \nu(b)\}
\end{aligned}
$$

Hence ν is a valuation!

$$
\begin{aligned}
\Longrightarrow R_{\nu} & =\left\{a \in K^{*} \mid \nu(a) \geq e_{G}=\overline{1}=\nu(1)\right\} \cup\{0\} \\
& =\left\{a \in K^{*} \mid \bar{a} \geq \overline{1}\right\} \cup\{0\} \\
& =\left\{a \in K^{*} \left\lvert\, a=\frac{a}{1} \in R\right.\right\} \cup\{0\} \\
& =R
\end{aligned}
$$

Proposition 8.4 (First property of VR's). Let R be a VR. Then:
(a) R is local with $\mathfrak{m}_{R}=\left\{a \in \operatorname{Quot}(R) \backslash\{0\} \left\lvert\, \frac{1}{a} \notin R\right.\right\} \cup\{0\} \triangleleft \cdot R$
(b) If $R \subsetneq R^{\prime} \leq \operatorname{Quot}(R)$, then

- R^{\prime} is a $V R$
- $\mathrm{m}_{R^{\prime}} \subsetneq \mathrm{m}_{R}$
- $R^{\prime}=R_{\mathbf{m}_{R^{\prime}}}$

In particular: $\operatorname{dim}(R)>\operatorname{dim}\left(R^{\prime}\right)$
(c) R is normal, i.e. $\operatorname{Int}_{Q u o t(R)}(R)=R$
(d) $\{I \mid I \preccurlyeq R\}$ is totally ordered with respect to inclusion, i.e.

$$
I, J \preccurlyeq R \Longrightarrow I \subseteq J \text { or } J \subseteq I
$$

(e) $I=\left\langle a_{1}, \ldots, a_{r}\right\rangle_{R} \leqslant R \Longrightarrow \exists i: I=\left\langle a_{i}\right\rangle_{R}$. In particular, if R is a $D V R$, then R is a PID and $\operatorname{dim} R=1$.

Proof.
(a) Since obviously $\mathfrak{m}_{R}=R \backslash R^{*}$, we only have to show that $\mathfrak{m}_{R} \sharp R$. So let $a, b \in$ $\mathrm{m}_{R}, r \in R$:
Suppose that $r a \notin \mathfrak{m}_{R} \Longrightarrow r a \in R^{*} \Longrightarrow \frac{1}{a}=r \frac{1}{r a} \in R$ 亿.
Now suppose that $a+b \notin \mathfrak{m}_{R} \Longrightarrow a, b \neq 0$. W.l.o.g we can assume that $\frac{b}{a} \in R$, since R is a VR. Then $a+b=\left(1+\frac{b}{a}\right) a \in \mathfrak{m}_{R}$ 名
(b) $R \subsetneq R^{\prime} \subseteq \operatorname{Quot}(R)=: K$ Then $K=\operatorname{Quot}\left(R^{\prime}\right)$. By definition R^{\prime} is a VR (if $a \in K$ with $\frac{1}{a} \notin R^{\prime}$, then $\frac{1}{a} \notin R$ and thus $a \in R \subseteq R^{\prime}$). Hence, by (a), R^{\prime} is local and obviously

$$
\mathfrak{m}_{R^{\prime}}=\left\{a \in K \left\lvert\, \frac{1}{a} \notin R^{\prime}\right.\right\} \subseteq\left\{a \in K \left\lvert\, \frac{1}{a} \notin R\right.\right\}=\mathfrak{m}_{R}
$$

Since $R \subsetneq R^{\prime}$ there exists an $a \in R^{\prime} \backslash R$ and since R is a VR we must have $\frac{1}{a} \in R$. Hence $\frac{1}{a} \in \mathfrak{m}_{R}$ and $\frac{1}{a} \notin \mathfrak{m}_{R^{\prime}}$, so we have a strict inclusion.
Since $R \backslash \mathfrak{m}_{R^{\prime}} \subseteq R^{\prime} \backslash \mathfrak{m}_{R^{\prime}}=\left(R^{\prime}\right)^{*}$ we know that $R^{\prime \prime}:=R_{\mathfrak{m}_{R^{\prime}}} \subseteq R^{\prime}$ is a VR by (a) and $\mathfrak{m}_{R^{\prime \prime}}=\mathfrak{m}_{R^{\prime}}$:
" \supseteq ": \checkmark
$" \subseteq$ ": Let $a=\frac{b}{c} \in \mathfrak{m}_{R^{\prime \prime}}$ where $b, c \in R, b \in \mathfrak{m}_{R^{\prime}}, c \notin \mathfrak{m}_{R^{\prime}}$. Then $c \in\left(R^{\prime}\right)^{*}$ and hence $a \in \mathfrak{m}_{R^{\prime}}$

Thus we must have $R^{\prime \prime}=R^{\prime}$, because otherwise, as we proved above, we would have $\mathfrak{m}_{R^{\prime}} \subsetneq \mathfrak{m}_{R^{\prime \prime}}$ ұ
(c) Suppose that $a \in \operatorname{Quot}(R) \backslash R$ and $f=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i} \in R[x]$ such that $f(a)=0$. Then by dividing by a^{n-1}

$$
a=-\sum_{i=0}^{n-1} \underbrace{a_{i}}_{\in R} \underbrace{\frac{1}{a}}_{\in R})^{n-i-1} \in R \text { 立 }
$$

(d) Exerc. 49
(e) By (d) there exists an i, such that $\left\langle a_{j}\right\rangle \subseteq\left\langle a_{i}\right\rangle \forall j=1$..r. Thus $I=\left\langle a_{i}\right\rangle_{R}$. Furthermore, every DVR is noetherian, so every ideal is finitely generated, hence principal. So R is a PID and since it is not a field, by 4.17 it has dimension 1.

Corollary 8.5.

An $I D R$ is a $D V R \Longleftrightarrow R=R_{\nu}$ for some discrete valuation ν
Proof.

- " $\Longrightarrow "$: Since R is a DVR, by 8.4 it is a PID and local. Hence

$$
\mathfrak{m}_{R}=\langle t\rangle_{R} \Longrightarrow R=R_{\langle t\rangle_{R}} \stackrel{8.2(1)}{=} R_{\nu}
$$

for some discrete valuation ν.

- "œ": Let $0 \neq I \leqslant R$. Choose $0 \neq f \in I$ with $\nu(f)$ minimal. We show that $I=\langle f\rangle$:
"つ": \checkmark
$" \subseteq ":$ Let $0 \neq g \in I$

$$
\begin{aligned}
& \Longrightarrow \nu(g) \geq \nu(f) \\
& \Longrightarrow \nu\left(\frac{g}{f}\right) \geq 0 \\
& \Longrightarrow \frac{g}{f} \in R_{\nu} \\
& \Longrightarrow g=\underbrace{\frac{g}{f}}_{\in R} \cdot f \in\langle f\rangle_{R}
\end{aligned}
$$

Thus R is a PID, hence noetherian and since by 8.3 it already is a VR, it is a DVR.

8. Valuation Rings and Dedekind Domains

Corollary 8.6. Let R be a VR, k a field, such that

$$
k \subseteq R \subseteq \operatorname{Quot}(R)=: K, \operatorname{trdeg}_{k}(K)<\infty
$$

Then:

$$
\operatorname{dim} R \leq \operatorname{trdeg}_{k}(K)-\operatorname{trdeg}_{k}\left(R / \mathrm{m}_{R}\right)
$$

Proof. Skipped

Example 8.7.

(a) Let $f \in k[\underline{x}]$ be irreducible. Then

- $k \subseteq k[\underline{x}]_{\langle f\rangle}=: R \subseteq \operatorname{Quot}(R)=k(\underline{x})=: K$
- R is a DVR by 8.2 (d), 8.5
- $\Longrightarrow \operatorname{dim}(R)=1$
- $\operatorname{trdeg}_{k}(K) \stackrel{\boxed{7.20}}{=} n:=$ 'number of variables'
- $R / \mathfrak{m}_{R}=k[\underline{x}]_{\langle f\rangle} /\langle f\rangle=(k[\underline{x}] /\langle f\rangle)\langle\overline{0}\rangle=\operatorname{Quot}(k[\underline{x}] /\langle f\rangle)$

Hence

$$
\begin{aligned}
\operatorname{trdeg}_{k}\left(R / \mathrm{m}_{R}\right) & =\operatorname{trdeg}_{k}(\operatorname{Quot}(k[\underline{x}] /\langle f\rangle)) \\
& =\operatorname{trdeg}_{k}(k[\underline{x}] /\langle f\rangle) \\
& \stackrel{7.2}{=} \operatorname{dim}(k[\underline{x}] /\langle f\rangle) \\
& \stackrel{7.7}{=} n-1
\end{aligned}
$$

Thus $\operatorname{dim}(R)=1=\operatorname{trdeg}_{k}(K)-\operatorname{trdeg}_{k}\left(R / \mathfrak{m}_{R}\right)$
(b) Let $K\{\{t\}\}=\left\{\sum_{n=0}^{\infty} a_{n} t^{\alpha_{n}} \mid \mathbb{R} \ni \alpha_{n} \nearrow \infty, a_{n} \in K\right\}$ the field of puiseux series over K, where

$$
\text { ord }: K\{\{t\}\} \backslash\{0\} \rightarrow \mathbb{R}: f \mapsto \min \left\{\alpha_{n} \mid a_{n} \neq 0\right\}
$$

is a valuation. Then:

- $R_{\text {ord }}=\{f \in K\{\{t\}\} \mid \operatorname{ord}(f) \geq 0\}$ is the VR
- $\operatorname{dim}\left(R_{\text {ord }}\right)=1$, but $R_{\text {ord }}$ is not noetherian, hence it is not a DVR.
- If $\alpha_{1}, \ldots, \alpha_{n}$ are algebraicaly independent $/ \mathbb{Q}$, then $t^{\alpha_{1}}, \ldots, t^{\alpha_{n}}$ are algebraically independent over $K=\left\{a \cdot t^{0} \mid a \in K\right\}$
- Hence $\operatorname{trdeg}_{K}(K\{\{t\}\})=\infty($ cf. Exerc. 50$)$
(c) Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ be algebraically indep./Q. Then for $\varphi_{\underline{\alpha}}: K\left(x_{1}, \ldots, x_{n}\right) \hookrightarrow$ $K\{\{t\}\}, x_{i} \mapsto t^{\alpha_{i}}$ we get a valuation

$$
\nu: \operatorname{ord} \circ \varphi_{\underline{\alpha}}: K(\underline{x}) \rightarrow \mathbb{R}
$$

on $K(\underline{x})$ and

- $\operatorname{dim} R_{\nu}=1$
- $\operatorname{trdeg}_{K}(K(\underline{x}))=n$
- $R_{\nu / \mathfrak{m}_{R_{\nu}}} \cong K$
- Hence for $n \geq 2 \operatorname{dim} R=1<n=\operatorname{trdeg}_{K}(K(\underline{x}))-\operatorname{trdeg}_{K}\left(R / m_{R}\right)$

Theorem 8.8. Let R be an $I D, I \preccurlyeq R, I \subsetneq R$. Then:

$$
\exists R \subseteq R^{\prime} \subseteq \operatorname{Quot}(R): R^{\prime} \text { is a } V R \text { and } I \cdot R^{\prime} \subseteq \mathfrak{m}_{R^{\prime}}
$$

Proof. Consider

$$
M:=\left\{R^{\prime} \leq \operatorname{Quot}(R) \mid R \subseteq R^{\prime} \text { and } I \cdot R^{\prime} \neq R^{\prime}\right\}
$$

Then $M \neq \emptyset$, since $R \in M$ and M is partially ordered with respect to inclusion. Now let \mathcal{R} be any totally ordered subset of M and $R^{\prime}=\bigcup_{R^{\prime \prime} \in \mathcal{R}} R^{\prime \prime} \leq \operatorname{Quot}(R)$. Then $R \subseteq R^{\prime} \subseteq$ Quot (R) and $I \cdot R^{\prime} \neq R^{\prime}$, since: Suppose $1 \in I \cdot R^{\prime}$:

$$
\begin{aligned}
& \Longrightarrow 1=\sum_{i=1}^{n} a_{i} b_{i}, a_{i} \in R^{\prime}, b_{i} \in I \\
& \Longrightarrow \exists R^{\prime \prime} \in \mathcal{R}: a_{1}, \ldots, a_{n} \in R^{\prime \prime} \\
& \Longrightarrow 1 \in I \cdot R_{\text {ұ }}^{\prime \prime}
\end{aligned}
$$

Hence $R^{\prime} \in M$ and it is an upper bound for the chain above. Hence we can apply Zorn's lemma and there exists an $R^{\prime} \in M$ maximal with respect to inclusion. It remains to show that R^{\prime} is a VR:

8. Valuation Rings and Dedekind Domains

Suppose $x \in \operatorname{Quot}\left(R^{\prime}\right)=\operatorname{Quot}(R)$, such that $x \notin R^{\prime}$ and $\frac{1}{x} \notin R^{\prime}$

$$
\begin{aligned}
\Longrightarrow & R^{\prime} \subsetneq R^{\prime}[x], R^{\prime} \subsetneq R^{\prime}\left[\frac{1}{x}\right] \\
\Longrightarrow & R^{\prime}[x], R^{\prime}\left[\frac{1}{x}\right] \notin M, \text { since } R^{\prime} \text { is maximal } \\
\Longrightarrow & I \cdot R^{\prime}[x]=\underbrace{R^{\prime}[x]}_{\ni 1}, I \cdot R^{\prime}\left[\frac{1}{x}\right]=\underbrace{R^{\prime}\left[\frac{1}{x}\right]}_{\ni 1} \\
\Longrightarrow & \exists a_{i}, b_{j} \in I \cdot R^{\prime}: 1=\sum_{i=0}^{n} a_{i} x^{i}=\sum_{j=0}^{m} b_{j} \frac{1}{x^{j}} ; n, m \text { minimal } \\
\Longrightarrow & (\text { wlog } n \geq m) 1-b_{0}=\left(1-b_{0}\right) \sum_{i=0}^{n} a_{i} x^{i}=\sum_{i=0}^{n}\left(1-b_{0}\right) a_{i} x^{i} \text { and } \\
& \left(1-b_{0}\right) a_{n} x^{n}=a_{n} x^{n} \sum_{j=1}^{m} b_{j} \frac{1}{x^{j}}=\sum_{j=1}^{m} b_{j} a_{n} x^{n-j} \\
\Longrightarrow & 1=\left(1-b_{0}\right)+b_{0}=\sum_{i=0}^{n-1} \underbrace{\left(1-b_{0}\right) a_{i}}_{\in I \cdot R^{\prime}} x^{i}+\sum_{j=1}^{m} \underbrace{a_{n} b_{j}}_{\in I \cdot R^{\prime}} x^{n-j}+\underbrace{b_{0}}_{\in I \cdot R^{\prime}}
\end{aligned}
$$

which is a contradiction, since n was minimal.
Corollary 8.9. If R is an $I D$, then:

$$
\operatorname{Int}_{\text {Quot }(R)}(R)=\bigcap_{R \subseteq R^{\prime} \subseteq \operatorname{Quot}(R), R^{\prime} V R} R^{\prime}
$$

is the normalisation of R.
Proof.
$" \subseteq ":$ Let $x \in \operatorname{Int}_{Q u o t(R)}(R) \Longrightarrow x$ integral $_{/ R}$, hence integral ${ }_{/ R^{\prime}}$ for all $R^{\prime} \leq \operatorname{Quot}(R)$ VR with $R \subseteq R^{\prime}$. By 8.4(c) we must have $x \in R^{\prime}$.

8. Valuation Rings and Dedekind Domains

" \supseteq ": Suppose $x \notin \operatorname{Int}_{\text {Quot }(R)}(R)$

$$
\begin{aligned}
& \Longrightarrow x \notin R\left[\frac{1}{x}\right] \\
&\left(\text { since otherwise } x=a_{n} \frac{1}{x^{n}}+a_{n-1} \frac{1}{x^{n-1}}+\ldots+a_{0},\right. \text { hence } \\
& x^{n+1}=a_{n}+a_{n-1} x+\ldots+a_{0} x^{n} \text { 々) } \\
& \Longrightarrow \frac{1}{x} \notin\left(R\left[\frac{1}{x}\right]\right)^{*} \\
& \Longrightarrow \exists \mathfrak{m} \triangleleft \cdot R\left[\frac{1}{x}\right]: \frac{1}{x} \in \mathfrak{m} \\
& \underline{\underline{\underline{8.8}}} \exists R\left[\frac{1}{x}\right] \subseteq R^{\prime} \text { VR } \subseteq \operatorname{Quot}\left(R\left[\frac{1}{x}\right]\right)=\operatorname{Quot}\left(R^{\prime}\right), \underbrace{\mathfrak{m}}_{\ni \frac{1}{x}} \cdot R^{\prime} \neq R^{\prime} \\
& \Longrightarrow \frac{1}{x} \notin\left(R^{\prime}\right)^{*} \\
& \Longrightarrow x \notin R^{\prime}, \text { hence } x \notin \bigcap R^{\prime}
\end{aligned}
$$

Proposition 8.10. Let (R, \mathbf{m}) be a local, noetherian $I D$ of dimension $\operatorname{dim}(R)=1$. Then the following are equivalent:
(a) R is a $D V R$
(b) R is a PID
(c) \mathfrak{m} is principal
(d) $\operatorname{dim}_{R / m}\left(\mathrm{~m} / \mathrm{m}^{2}\right)=1$, i.e. $(R, \mathrm{~m})$ is regular.
(e) $0 \neq I 太 R \Longrightarrow \exists n \geq 0: I=m^{n}$
(f) $\exists t \in R: \forall 0 \neq I \geqq R: \exists n \geq 0: I=\left\langle t^{n}\right\rangle$
(g) R is normal
(h) $\operatorname{dim}_{R / m}\left(\mathrm{~m}^{k} / \mathrm{m}^{k+1}\right)=1$ for all $k \geq 0$.

Note that condition (h) actually implies that $\operatorname{dim}(R)=1$.
Proof.

- "(a) $\Longrightarrow(b) ": 8.4(e)$
- "(b) $\Longrightarrow(c) ": \checkmark$
- "(c) $\Longrightarrow(d) ":$
" $\leq ": \checkmark$
$" \geq$ ": Assume that $\operatorname{dim}_{R / m}\left(m^{\prime} / \mathbf{m}^{2}\right)=0$ Then $\boldsymbol{m}=\mathbf{m}^{2}$, hence by NAK $\boldsymbol{m}=0\langle\operatorname{dim} R=1$
- "(d) $\Longrightarrow(c) ": 2.12$
- "(c) $\Longrightarrow(\mathrm{e}) ":$ Let $0 \neq I 太 R$

$$
\Longrightarrow \sqrt{I}=\bigcap_{P \text { prime }, I \subseteq P} P \stackrel{\operatorname{dim}(R)=1}{=} \mathbf{m}
$$

$\stackrel{5.4}{=} I$ is m -primary

$$
\begin{aligned}
& \underline{\underline{5.6}} \exists n:\left\langle t^{n}\right\rangle=\mathfrak{m}^{n} \subseteq I \subseteq \mathfrak{m}^{n-1}=\left\langle t^{n-1}\right\rangle \\
& \Longrightarrow 1=\operatorname{dim}_{R / m^{\prime}}\left(\mathfrak{m}^{n-1} / \mathrm{m}^{n}\right) \geq \operatorname{dim}_{R / m}\left(I / \mathrm{m}^{n}\right) \\
& \Longrightarrow I=\mathfrak{m}^{n-1} \text { or } I=\mathfrak{m}^{n}
\end{aligned}
$$

- "(e) $\Longrightarrow(\mathrm{f}) ": \operatorname{dim}(R)=1$ and NAK

$$
\begin{aligned}
& \Longrightarrow \exists t \in \mathfrak{m} \backslash \mathfrak{m}^{2} \\
& \xlongequal{(e)} \exists n:\langle t\rangle=\mathfrak{m}^{n} \\
& \stackrel{t \notin \mathfrak{m}^{2}}{\Longrightarrow} n=1 \\
& \Longrightarrow\langle t\rangle=\mathfrak{m} \\
& \Longrightarrow \mathfrak{m}^{k}=\langle t\rangle^{k}=\left\langle t^{k}\right\rangle
\end{aligned}
$$

- "(f) $\Longrightarrow(\mathrm{a})$ ": Since R is a PID and $\mathfrak{m}=\langle t\rangle$

$$
\begin{aligned}
& \left.\Longrightarrow R=R_{\langle t\rangle} \stackrel{8.2}{=} d\right) \\
& = \\
& R_{\nu} \text { with respect to some valuation } \nu \\
& \stackrel{\underline{\boxed{8.3}}}{\Longrightarrow} R \text { is a DVR }
\end{aligned}
$$

- "(a) $\Longrightarrow(\mathrm{g}) ":$ 8.4(b)
- "(g) $\Longrightarrow(\mathrm{c}) ":$ Let $0 \neq a \in \mathfrak{m}$ and set $I=\langle a\rangle$.

With the same argument as in "(c) $\Longrightarrow(\mathrm{e})$ " we get

$$
\begin{aligned}
& \exists n: \mathfrak{m}^{n} \subseteq I \subsetneq \mathfrak{m}^{n-1} \\
\Longrightarrow & \exists b \in \mathfrak{m}^{n-1} \backslash\langle a\rangle
\end{aligned}
$$

We want to show: $\mathfrak{m}=\langle t\rangle_{R}$, where $t=\frac{a}{b} \in \operatorname{Quot}(R)$.
Note. $b \mathfrak{m} \subseteq \mathfrak{m}^{n} \subseteq\langle a\rangle$, hence $\frac{1}{t} \mathfrak{m}=\frac{b}{a} \mathfrak{m} \subseteq R$

8. Valuation Rings and Dedekind Domains

Now suppose that $\frac{1}{t} \cdot \boldsymbol{m} \subseteq \boldsymbol{m}$ and consider the R-linear map

$$
\begin{aligned}
& \phi: \mathfrak{m} \rightarrow \mathfrak{m}, x \mapsto \frac{1}{t} \cdot x \\
& \stackrel{2.6}{\Longrightarrow} \chi_{\phi}\left(\frac{1}{t}\right)=0 \\
& \Longrightarrow \frac{1}{t} \text { integral }^{2} \\
& R \xlongequal{\text { normal }} \frac{1}{t} \in R \\
& \Longrightarrow b=\frac{1}{t} \cdot a \in\langle a\rangle_{R}
\end{aligned}
$$

Hence $\frac{1}{t} \cdot \boldsymbol{m}=R$ and thus

$$
\mathrm{m}=t \cdot \frac{1}{t} \cdot \mathrm{~m}=t R=\langle t\rangle_{R}
$$

- " $(\mathrm{h}) \Longrightarrow(\mathrm{d})$ ": This is clear with $k=1$.
- "(f) $\Longrightarrow(h) ":$ By (f) we know that the quotient $\mathrm{m}^{k} / \mathrm{m}^{k+1}$ is generated by the residue class of t^{k} and thus the dimension is at most 1 . If the dimension was zero, then by Nakayama's Lemma we would have $\mathrm{m}^{k}=0$ and R would be artinian in contradiction to $\operatorname{dim}(R)=1$.

It only remains to show that condition (h) implies that the dimension of R is one. If $\operatorname{dim}_{R / m}\left(\mathbb{m} / m^{2}\right)=1$, then by Nakayama's Lemma m is generated by one element and by Krull's Principle Ideal Theorem $\operatorname{dim}(R)=\operatorname{codim}(\boldsymbol{m}) \leq 1$. Moreover, if the dimension was zero, R would be artinian and some power of \mathfrak{m}^{k} would be zero, in contradiction to the assumption (h).

Example 8.11. $K \llbracket x \rrbracket, \mathbb{R}\{x\}, \mathbb{C}\{x\}, K[x]_{\langle x\rangle}$ are DVR's.

B). Dedekind Domains

Definition 8.12. A ring R is a Dedekind domain (DD) : \Longleftrightarrow

- R is an ID
- R is noetherian
- $\operatorname{dim}(R)=1$
- $0 \neq Q \preccurlyeq R, Q \subsetneq R$ primary

$$
\Longrightarrow \exists n \geq 1, P \in \mathfrak{m}-\operatorname{Spec}(R): Q=P^{n}
$$

(The idea is to use DDs as generalisation of UFDs for ideals)
Proposition 8.13. Let R be a noeth. ID with $\operatorname{dim}(R)=1,0 \neq I \triangleleft R, I \subsetneq R$. Then:

$$
\exists_{1} Q_{1}, \ldots, Q_{r} \preccurlyeq R \text { primary }: I=Q_{1} \cdot \ldots \cdot Q_{r}, \sqrt{Q_{i}} \neq \sqrt{Q_{j}} \forall i \neq j
$$

In particular: Every nonzero ideal in a DD factorises uniquely as a product of prime powers.

Proof. Exerc. 33
Definition 8.14. Let R be a $\mathrm{DD}, I, J \preccurlyeq R, P \in \operatorname{Spec}(R)$
(a) $n_{P}(I):=\sup \left\{n \geq 0 \mid I \subseteq P^{n}\right\}$ is the order of P as prime factor of I.
(b) I divides $J: \Longleftrightarrow I \mid J: \Longleftrightarrow \exists Q \geqq R: J=I \cdot Q$

Proposition 8.15. Let R be a $D D, 0 \neq I, J \preccurlyeq R$. Then:
(a) $I=\prod_{P \triangleleft \cdot R} P^{n_{P}(I)}=\prod_{P \in \operatorname{Ass}(I)} P^{n_{P}(I)}$ and $n_{P}(I)=0 \Longleftrightarrow P \notin \operatorname{Ass}(I)$
(b) $I \mid J \Longleftrightarrow J \subseteq I \Longleftrightarrow n_{P}(I) \leq n_{P}(J) \forall P \triangleleft \cdot R$
(c) $I \cdot J=\prod_{P \triangleleft \cdot R} P^{n_{P}(I)+n_{P}(J)}$

- $\operatorname{gcd}(I, J):=I+J=\prod_{P \triangleleft \cdot R} P^{\min \left\{n_{P}(I), n_{P}(J)\right\}}$
- $\operatorname{lcm}(I, J):=I \cap J=\prod_{P \triangleleft \cdot R} P^{\max \left\{n_{P}(I), n_{P}(J)\right\}}$

Hence $I \cdot J=(I+J) \cdot(I \cap J)$
Proof.
(a) Since R is a DD, by 8.13 we know that $I=\prod_{P \in \operatorname{Ass}(I)} P^{m_{P}}$ with $m_{P} \geq 1$. Now suppose that $Q \triangleleft \cdot R$ and $I \subseteq Q$. Then $\prod P^{m_{P}} \subseteq Q$ and since Q is prime there exists a $P \in \operatorname{Ass}(I): P \subseteq Q$. As both ideals are maximal, we have $P=Q \in \operatorname{Ass}(I)$. Hence:

$$
n_{P}(I) \neq 0 \Longleftrightarrow P \in \operatorname{Ass}(I)
$$

It remains to show that $\left(P \in \operatorname{Ass}(I) \Longrightarrow m_{P}=n_{P}(I)\right)$:
$" \leq ": I \subseteq P^{m_{P}} \Longrightarrow n_{P}(I) \geq m_{P}$
$" \geq ":\left(P_{P}\right)^{m_{P}}=I_{P} \subseteq\left(P_{P}\right)^{n_{P}(I)} \Longrightarrow m_{P} \geq n_{P}(I)$
(b) $\quad I \mid J \Longrightarrow \exists Q: J=I \cdot Q \Longrightarrow J=I \cdot Q \subseteq I$

- $J \subseteq I \Longrightarrow \prod_{P \triangleleft \cdot R} P^{n_{P}(J)}=J \subseteq I=\prod_{P \triangleleft \cdot R} P^{n_{P}(I)}$ Localising at a fixed P yields

$$
n_{P}(J) \geq n_{P}(I)
$$

- $n_{P}(I) \leq n_{P}(J) \forall P \triangleleft \cdot R \Longrightarrow J=I \cdot \prod P^{n_{P}(I)-n_{P}(J)}$. Hence $I \mid J$.
(c) \quad - $I \cdot J=\prod_{P \triangleleft \cdot R} P^{n_{P}(I)+n_{P}(J)}$ is clear
- $I+J=\prod_{P \triangleleft \cdot R} P^{\min \left\{n_{P}(I), n_{P}(J)\right\}}$:

$$
\begin{aligned}
I, J \subseteq I+J & \xlongequal{(b)} n_{P}(I), n_{P}(J) \geq n_{P}(I+J) \\
& \Longrightarrow n_{P}(I+J) \leq \min \left\{n_{P}(I), n_{P}(J)\right\} \leq n_{P}(I), n_{P}(J) \\
& \Longrightarrow I+J \stackrel{(b)}{\supseteq} \prod_{P \triangleleft \cdot R} P^{\min \left\{n_{P}(I), n_{P}(J)\right\}} \stackrel{(b)}{\supseteq} I, J \\
& \Longrightarrow I+J=\prod_{P \triangleleft \cdot R} P^{\min \left\{n_{P}(I), n_{P}(J)\right\}}
\end{aligned}
$$

since $I+J$ is the smallest ideal containing I and J.

- $I \cap J=\prod_{P \triangleleft \cdot R} P^{\max \left\{n_{P}(I), n_{P}(J)\right\}}$:

$$
\begin{aligned}
I \cap J \subseteq I, J & \xlongequal{(b)} n_{P}(I \cap J) \geq n_{P}(I), n_{P}(J) \\
& \Longrightarrow n_{P}(I \cap J) \geq \max \left\{n_{P}(I), n_{P}(J)\right\} \geq n_{P}(I), n_{P}(J) \\
& \stackrel{(b)}{\Longrightarrow} I \cap J \subseteq \prod_{P \triangleleft \cdot R} P^{\max \left\{n_{P}(I), n_{P}(J)\right\}} \subseteq I, J \\
& \Longrightarrow \prod_{P \triangleleft \cdot R} P^{\max \left\{n_{P}(I), n_{P}(J)\right\}} \subseteq I \cap J \\
& \Longrightarrow \text { Equality }
\end{aligned}
$$

Theorem 8.16. Let R be a $D D, I \preccurlyeq R, 0 \neq a \in I$. Then:

$$
\exists b \in I:\langle a, b\rangle_{R}=I
$$

In particular: Every ideal in a $D D$ can be generated by two elements.
Proof. For $P \in \operatorname{Ass}(I)$ choose

$$
b_{P} \in\left(P^{n_{P}(I)} \cdot\left(\prod_{P \neq Q \in \operatorname{Ass}(\langle a\rangle)} Q^{n_{Q}(I)+1}\right)\right) \backslash\left(\prod_{Q \in \operatorname{Ass}(\langle a\rangle)} Q^{n_{Q}(I)+1}\right)=: J_{P}
$$

Suppose $b_{P} \in P^{n_{P}(I)+1}$. Then

$$
b_{P} \in P^{n_{P}(I)+1} \cap J_{P} \stackrel{8.15}{=} \prod_{Q \in \operatorname{Ass}(\langle a\rangle)} Q^{n_{Q}(I)+1} 乡
$$

8. Valuation Rings and Dedekind Domains

Hence

$$
\begin{aligned}
& \Longrightarrow b:=\sum_{P \in \operatorname{Ass}(\langle a\rangle)} b_{P} \notin Q^{n_{Q}(I)+1} \forall Q \in \operatorname{Ass}(\langle a\rangle) \\
& \Longrightarrow n_{Q}(I) \stackrel{\langle a, b\rangle \subseteq I}{\leq} n_{Q}(\langle a, b\rangle) \stackrel{\langle a, b\rangle \nsubseteq Q^{n_{Q}(I)+1}}{\leq} n_{Q}(I) \\
& \Longrightarrow n_{Q}(I)=n_{Q}(\langle a, b\rangle) \forall Q \in \operatorname{Ass}(\langle a\rangle)
\end{aligned}
$$

And for all $Q \in \mathfrak{m}-\operatorname{Spec}(R) \backslash \operatorname{Ass}(\langle a\rangle)$

$$
\begin{aligned}
\Longrightarrow & n_{Q}(\langle a, b\rangle) \leq n_{Q}(\langle a\rangle) \stackrel{Q \notin \operatorname{Ass}(I)}{=} 0 \text { and } \\
& n_{Q}(\langle a\rangle) \geq n_{Q}(I) \\
\Longrightarrow & n_{Q}(I)=n_{Q}(\langle a\rangle)=n_{Q}(\langle a, b\rangle)=0
\end{aligned}
$$

Hence

$$
n_{Q}(I)=n_{Q}(\langle a, b\rangle) \forall Q \triangleleft \cdot R
$$

and by $8.15 I=\langle a, b\rangle$
Theorem 8.17. Let R be a noetherian $I D$ of dimension $\operatorname{dim}(R)=1$. Then the following are equivalent:
(a) R is a $D D$.
(b) R is normal.
(c) $\forall 0 \neq P \in \operatorname{Spec}(R): R_{P}$ is a $D V R$.

Proof.

- "(a) $\Longrightarrow(\mathrm{c})$ ": Let $0 \neq I \preccurlyeq R_{P}, I \subsetneq R_{P}$

$$
\begin{aligned}
& \Longrightarrow \sqrt{I}=\bigcap_{I \subseteq Q \triangleleft R_{P}} Q=P^{e} \triangleleft \cdot R_{P} \\
& \Longrightarrow I \text { is } P^{e} \text {-primary } \\
& \Longrightarrow I^{c} \text { is } P^{e c}=P \text {-primary } \\
& \stackrel{R \text { DD }}{\Longrightarrow} I^{c}=P^{n} \text { for some } n \\
& \Longrightarrow I \stackrel{3.2}{=} I^{c e}=\left(P^{e}\right)^{n} \\
& \stackrel{8.10}{\Longrightarrow} R_{P} \text { is a DVR }
\end{aligned}
$$

- "(c) \Longrightarrow (a)": Let $0 \neq Q \preccurlyeq R, Q \subsetneq R$ be P-primary and $n=\max \{k \mid Q \subseteq$ $\left.P^{k}\right\} \geq 1$

$$
\begin{aligned}
& \quad \Longrightarrow P_{P}^{n+1} \nsupseteq Q_{P} \subseteq P_{P}^{n} \\
& \stackrel{R_{P} \text { DVR }}{\Longrightarrow} Q_{P}=P_{P}^{n} \\
& \quad \Longrightarrow Q \subseteq P^{n} \subseteq\left(P^{n}\right)^{e c}=\left(Q_{P}\right)^{c}=Q^{e c} \stackrel{5.4}{=} Q \\
& \quad \Longrightarrow Q=P^{n}
\end{aligned}
$$

-"(b) $\Longleftrightarrow(\mathrm{c}) ":$

$$
\begin{aligned}
R \text { normal } & \stackrel{6.9}{\Longleftrightarrow} \forall \mathrm{~m} \triangleleft \cdot R: R_{\mathfrak{m}} \text { normal } \\
& \stackrel{8.10}{\Longleftrightarrow} \forall \mathrm{~m} \triangleleft \cdot R: R_{\mathfrak{m}} \text { is a DVR }
\end{aligned}
$$

Remark 8.18. Let $\mathfrak{x} \subseteq \mathbb{A}_{K}^{n}$ be an affine curve, $K=\bar{K}$ and let

$$
R=K[\mathfrak{x}]=K\left[x_{1}, \ldots, x_{n}\right] / I(\mathfrak{x})
$$

Then

$$
\begin{aligned}
& \mathfrak{X} \text { is smooth } \\
& \Longleftrightarrow \forall p \in \mathfrak{\mathfrak { x }}: 1=\operatorname{dim}_{p}(\mathfrak{x})=\operatorname{dim}_{p}\left(T_{p}(\mathfrak{x})\right)=\operatorname{dim}_{R_{p} / \mathfrak{m}_{p}^{2}}\left(\mathfrak{m}_{p} / \mathbf{m}_{p}^{2}\right)=\operatorname{dim}_{K}\left(\mathfrak{m}_{p} / \mathbf{m}_{p}^{2}\right) \\
& \Longleftrightarrow R_{\mathfrak{m}_{P}} \text { is a } D V R(\forall p \in \mathfrak{X} \stackrel{H N S}{\Longleftrightarrow} \forall \mathfrak{m} \triangleleft \cdot R \Longleftrightarrow \forall 0 \neq P \in \operatorname{Spec}(R)) \\
& \stackrel{8.7}{\Longleftrightarrow} K[\mathfrak{X}] \text { normal } \\
& \stackrel{8.17}{\Longleftrightarrow} K[\mathfrak{X}] \text { is a } D D \\
& \Longleftrightarrow \mathfrak{X} \text { is normal }
\end{aligned}
$$

Note. In higher dimensions only (smooth \Longrightarrow normal) holds! In terms of algebraic geometry one can see DD's as the equivalent to smooth curves. For example:

- $\mathfrak{x}=V\left(y-x^{2}\right) \Longrightarrow K[\mathfrak{x}]=K[x, y] /\left\langle y-x^{2}\right\rangle \cong K[z]$ is a DD
- $\mathfrak{X}=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}_{K}^{3} \mid t \in K\right\}$. Then

$$
K[\mathfrak{x}]=K[x, y, z] /\left\langle z-x^{3}, y-x^{2}, x z-y^{2}\right\rangle \cong K[t]
$$

is a DD .
Example 8.19. If R is a PID but not a field, then R is a $D D$. In particular $\mathbb{Z}, \mathbb{Z}[i]$, $K[t], K \llbracket t \rrbracket, \mathbb{R}\{x\}, \mathbb{C}\{x\}$ are DD's.

Definition 8.20. A finite algebraic field extension K of \mathbb{Q} is called an algebraic number field and $\operatorname{Int}_{K}(\mathbb{Z})$ is called its ring of integers.

Theorem 8.21. The ring of integers of a finite algebraic number field is a $D D$.
Proof. Let $\mathbb{Q} \subseteq K$ be a field extension, $d=\operatorname{dim}_{\mathbb{Q}} K$ and $R:=\operatorname{Int}_{K}(\mathbb{Z})$. First we show that R is noetherian. By Exercise 30 it suffices to show:

$$
\forall 0 \neq I \preccurlyeq R \Longrightarrow I \cap \mathbb{Z} \neq\{0\}
$$

Suppose $I \neq 0$, but $I \cap \mathbb{Z}=\{0\}$. Then

$$
\mathbb{Z}=\mathbb{Z} / I \cap \mathbb{Z} \hookrightarrow R / I
$$

is integral by 6.8 and by 6.17 we know that

$$
\operatorname{dim}(\mathbb{Z})=\operatorname{dim}(R / I)<\operatorname{dim}(R) \stackrel{6.17}{\stackrel{6=\operatorname{Int}_{K}(\mathbb{Z})}{=} \operatorname{dim}(\mathbb{Z}) z}
$$

Now we show $\operatorname{dim}(R)=1$ and that R is a normal ID: Since $\mathbb{Z} \hookrightarrow R$ is integral, by 6.17 $\operatorname{dim}(R)=\operatorname{dim}(\mathbb{Z})=1$ and since $\operatorname{Quot}(R) \subseteq K$

$$
\begin{aligned}
& R \subseteq \operatorname{Int}_{Q u o t}(R)(R) \\
& \subseteq \operatorname{Int}_{K}(R) \\
&=\operatorname{Int}_{K}\left(\operatorname{Int}_{K}(\mathbb{Z})\right) \\
& \stackrel{6.7}{=} \operatorname{Int}_{K}(\mathbb{Z})=R
\end{aligned}
$$

Hence $\operatorname{Int}_{\text {Quot }(R)}(R)=R$. Hence R is normal (and of course an ID). By 8.17 it is a DD.

Example 8.22. If $d<0$ is squarefree, then

$$
\operatorname{Int}_{\mathbb{Q}[\sqrt{d}]}(\mathbb{Z})=\mathbb{Z}\left[\omega_{d}\right], \omega_{d}= \begin{cases}\sqrt{d} & , d \equiv 2,3 \quad \bmod 4 \\ \frac{1+\sqrt{d}}{2} & , d \equiv 1 \quad \bmod 4\end{cases}
$$

Proof. Exercise 42

Example 8.23.

(a) $R=\mathbb{Z}, I=\langle 6\rangle \Longrightarrow I=\langle 2\rangle\langle 3\rangle$ In this case prime factorisation of ideals corresponds to prime factorisation of elements.
(b) $R=\mathbb{Z}[\sqrt{-5}]=\operatorname{Int}_{Q[\sqrt{-5]}}(\mathbb{Z})$ is a DD , but not factorial: Let $I=\langle 6\rangle$. Claim:

$$
I=P^{2} \cdot Q \cdot Q^{\prime}
$$

for $P=\langle 2,1+\sqrt{-5}\rangle, Q=\langle 3,1+\sqrt{-5}\rangle, Q^{\prime}=\langle 3,1-\sqrt{-5}\rangle$ is the unique prime factorisation of I in R. but $\langle 2\rangle=P^{2},\langle 3\rangle=Q \cdot Q^{\prime}$ are not prime.

Proof. Exercise 34

8. Valuation Rings and Dedekind Domains

C). Fractional Ideals, Invertible Ideals, Ideal Class Group

Definition 8.24. Let R be an $\operatorname{ID}, K=\operatorname{Quot}(R), 0 \neq I \subseteq K$ an R - submodule of K.
(a) I is called a fractional ideal of R

$$
\begin{aligned}
& : \Longleftrightarrow \exists 0 \neq x \in R: x \cdot I \subseteq R \\
& \\
& \Longleftrightarrow \exists 0 \neq x \in R, I^{\prime} \geqq R: I=\frac{1}{x} \cdot I^{\prime}
\end{aligned}
$$

A fractional ideal I is called integral

$$
: \Longleftrightarrow I \subseteq R \Longleftrightarrow I \preccurlyeq R
$$

A fractional ideal I is called principal

$$
: \Longleftrightarrow \exists y \in K: I=\langle y\rangle_{R}=y R
$$

Notation: $R:_{K} I:=\{x \in K \mid x \cdot I \subseteq R\}$ is an R-submodule of K.
(b) I is called an invertible ideal of R (or Cartier divisor of R)

$$
\begin{aligned}
: & \Longleftrightarrow \exists I^{\prime} \leq K \text { an } R \text {-submodule }:\left\langle a b \mid a \in I, b \in I^{\prime}\right\rangle_{R}=: I \cdot I^{\prime}=R \\
& \Longleftrightarrow I \cdot\left(R:_{K} I\right)=R
\end{aligned}
$$

Note. We have to prove the equivalence:
Proof. " " is clear and " \Longrightarrow " holds since

$$
I^{\prime} \subseteq\left(R:_{K} I\right) \Longrightarrow R=I \cdot I^{\prime} \subseteq I \cdot\left(R:_{K} I\right) \subseteq R
$$

Notation:

$$
\operatorname{Div}(R):=\{I \leq K \mid I \text { is an invertible ideal }\}
$$

is called the ideal group (or the group of cartier divisors) of R.
Note. Let $I, I^{\prime} \in \operatorname{Div}(R)$

- $I \cdot I^{\prime} \cdot\left(R:_{K} I^{\prime}\right) \cdot\left(R:_{K} I\right)=I \cdot R \cdot\left(R:_{K} I\right)=I \cdot\left(R:_{K} I\right)=R$. Hence $\operatorname{Div}(R)$ is closed with respect to ".".
- $I \cdot R=I \forall I \in \operatorname{Div}(R)$
- $\left(I \cdot I^{\prime}\right) \cdot I^{\prime \prime}=I \cdot\left(I^{\prime} \cdot I^{\prime \prime}\right) \forall I, I^{\prime} \cdot I^{\prime \prime} \in \operatorname{Div}(R)$ obviously
- $I \cdot\left(R:_{K} I\right)=R \Longrightarrow\left(R:_{K} I\right) \in \operatorname{Div}(R)$ is the inverse of I.

In particular $I^{\prime}=\left(R:_{K} I\right)$ in the definition, since the inverse is unique.

8. Valuation Rings and Dedekind Domains

Example 8.25. Let R be an ID, $K=\operatorname{Quot}(R), I \leq K$ an R-submodule
(a) $I=\left\langle\frac{a_{1}}{b_{1}}, \ldots, \frac{a_{n}}{b_{n}}\right\rangle$ finitely generated, then I is fractional with $x=b_{1} \cdot \ldots \cdot b_{n}$.
(b) R noetherian, I fractional, then I is finitely generated, since there exists an $x \in R, I^{\prime} \Downarrow R: I=\frac{1}{x} I^{\prime}$. As R is noetherian, $I^{\prime}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, hence $I=$ $\left\langle\frac{a_{1}}{x}, \ldots, \frac{a_{n}}{x}\right\rangle_{R}$.
(c) I invertible $\Longrightarrow I$ fin. gen. $\stackrel{(a)}{\Longrightarrow} I$ fractional, since:

$$
\begin{aligned}
& 1 \in R=I \cdot\left(R:_{K} I\right) \\
\Longrightarrow & 1=\sum_{i=1}^{n} a_{i} b_{i}, a_{i} \in I, b_{i} \in\left(R:_{K} I\right) \\
\Longrightarrow & \forall c \in I: c=1 \cdot c=\sum_{i=1}^{n} a_{i} \underbrace{\left(b_{i} \cdot c\right)}_{\in R} \in\left\langle a_{1}, \ldots, a_{n}\right\rangle_{R}
\end{aligned}
$$

(d) $I=\langle x\rangle$ principal, $0 \neq x \in K \Longrightarrow I$ is invertible
(e) $R=\mathbb{Z}, K=\mathbb{Q}$, then

$$
\begin{aligned}
I \text { fractional } & \Longleftrightarrow I=q \cdot \mathbb{Z} \text { for some } 0 \neq q \in \mathbb{Q} \\
I \text { integral } & \Longleftrightarrow I=q \cdot \mathbb{Z} \text { for some } 0 \neq q \in \mathbb{Z}
\end{aligned}
$$

Thus: fractional \Longrightarrow principal \Longrightarrow invertible
Proposition 8.26. Let (R, \mathbf{m}) be a local $I D, 0 \neq I \leq \operatorname{Quot}(R)=$: K an R-submodule. Then:

$$
I \text { is an invertible ideal } \Longleftrightarrow I=\langle a\rangle \text { is principal, } a \neq 0
$$

Proof.

- " "
- " $\Longrightarrow "$: Since $I \cdot\left(R:_{K} I\right)=R$

$$
\begin{aligned}
& \Longrightarrow \exists a \in \underbrace{I}_{\subseteq K}, b \in \underbrace{R::_{K} I}_{\subseteq K}: u:=a b \notin \mathrm{~m} \\
& \Longrightarrow u \in R^{*}, \text { since } R \text { is local }
\end{aligned}
$$

Let $c \in I$.

$$
\begin{aligned}
& \Longrightarrow c \cdot b \in R \\
& \Longrightarrow c=(c \cdot b) \cdot u^{-1} \cdot \frac{u}{b}=\underbrace{(c \cdot b) \cdot u^{-1}}_{\in R} \cdot a \in\langle a\rangle_{R} \\
\Longrightarrow I= & \langle a\rangle
\end{aligned}
$$

Proposition 8.27 (Invertibility is a local property). Let R be an $I D, 0 \neq I \subseteq K a$ fractional ideal. Then the following are equivalent:

- I is invertible over R.
- I is fin. gen. and I_{P} is invertible over $R_{P} \forall P \in \operatorname{Spec}(R)$
- I is fin. gen. and $I_{\mathfrak{m}}$ is invertible over $R_{\mathfrak{m}} \forall \mathfrak{m} \in \mathfrak{m}-\operatorname{Spec}(R)$

In particular: For fin. gen. R-submodules of K invertibility is a local property.
Proof.

- "(a) $\Longrightarrow(\mathrm{b})$ ": By 8.25 (c) I is finitely generated and

$$
I \cdot I^{\prime}=R \Longrightarrow I_{P} \cdot I_{P}^{\prime}=\left(I \cdot I^{\prime}\right)_{P}=R_{P}
$$

Hence I_{P} is invertible

- "(b) $\Longrightarrow(c) ": ~ \checkmark$
- "(c) $\Longrightarrow(\mathrm{a})$ ": We have to show that

$$
S^{-1}\left(R:_{K} I\right)=\left(S^{-1} R:_{K} S^{-1} I\right) \text { for } S=R \backslash \mathfrak{m}
$$

$" \subseteq ":$ Let $b \in\left(R:_{K} I\right), s \in S$

$$
\Longrightarrow \frac{b}{s} \cdot S^{-1} I \subseteq S^{-1} R \Longrightarrow \frac{b}{s} \in S^{-1} R:_{K} S^{-1} I
$$

" \supseteq ": Since I is finitely generated we have $I=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Now let

$$
\begin{aligned}
& \frac{b}{t} \in S^{-1} R:_{K} S^{-1} I \\
\Longrightarrow & b \cdot a_{i}=\frac{b}{t}(\underbrace{t \cdot a_{i}}_{\in S^{-1} I}) \in S^{-1} R \\
\Longrightarrow & \exists s_{i} \in S: b \cdot a_{i} \cdot s_{i} \in R \\
\Longrightarrow & \text { For } s=s_{1} \cdot \ldots \cdot s_{n} b \cdot a_{i} \cdot s \in R \\
\Longrightarrow & b \cdot s \in R:_{K} I \\
\Longrightarrow & \frac{b}{t}=\frac{b s}{t s} \in S^{-1}\left(R:_{K} I\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
&\left(I \cdot\left(R:_{K} I\right)\right) \mathfrak{m}=I_{\mathfrak{m}} \cdot\left(R:_{K} I\right) \mathfrak{m} \\
&=I_{\mathfrak{m}} \cdot\left(R \mathfrak{m}:_{K} I_{\mathfrak{m}}\right)=R_{\mathfrak{m}} \forall \mathfrak{m} \triangleleft \cdot R \\
& \Longrightarrow I \cdot\left(R:_{K} I\right) \nsubseteq \mathfrak{m} \forall \mathfrak{m} \\
& \Longrightarrow I \cdot\left(R:_{K} I\right)=R
\end{aligned}
$$

Corollary 8.28. Let (R, \mathfrak{m}) be a local $I D$ and not a field, $K:=\operatorname{Quot}(R)$. Then R is a $D V R \Longleftrightarrow \operatorname{Div}(R)=\{I \mid I$ fractional ideal of $R\}$
(i.e. I fractional $\Longleftrightarrow I$ invertible)

Proof.
Note. By 8.25 $\operatorname{Div}(R) \subseteq\{I \mid I$ fractional $\}$

- " \Longrightarrow ": Let I be a fractional ideal of R

$$
\begin{aligned}
& \Longrightarrow \exists I^{\prime} \leqslant R, I^{\prime} \stackrel{R}{\stackrel{\text { DVR }}{=}}\langle y\rangle_{R}, 0 \neq x \in R: I=\frac{1}{x} \cdot I^{\prime}=\left\langle\frac{y}{x}\right\rangle_{R} \\
& \Longrightarrow I \text { is principal } \\
& \stackrel{8.25}{\Longrightarrow \Longrightarrow} I \text { is invertible }
\end{aligned}
$$

- " ": Let $0 \neq I \preccurlyeq R$. Then I is a fractional ideal of R and by assumption invertible. By 8.26 it is principal, hence R is a PID and not a field. Thus by 8.10, R is a DVR.

Theorem 8.29. Let R be an ID, R not a field. Then

$$
R \text { is a } D D \Longleftrightarrow \operatorname{Div}(R)=\{I \mid I \text { fractional }\}
$$

(i.e. I fractional $\Longleftrightarrow I$ invertible)

Proof.

- " \Longrightarrow ": Since R is a DD, R is noetherian and R_{m} is a DVR $\forall \mathrm{m} \triangleleft \cdot R$ by 8.17 Now let I be a fractional ideal of R.
$\stackrel{8.25}{\Longrightarrow} I$ fin. gen. and $I_{\mathfrak{m}}$ fractional

$$
\begin{aligned}
& \quad \Longrightarrow I=\frac{1}{x} I^{\prime}, I^{\prime} \triangleq R \\
& \quad \Longrightarrow I_{\mathfrak{m}}=\frac{1}{x} I_{\mathfrak{m}}^{\prime} \\
& \\
& \stackrel{R \text { DyR }}{\Longrightarrow} I_{\mathfrak{m}} \text { is invertible and } I \text { is fin. gen }
\end{aligned}
$$

$\stackrel{8.27}{=} I$ is invertible

8. Valuation Rings and Dedekind Domains

- "œ": Since every ideal $0 \neq I \lessgtr R$ is fractional, hence invertible, hence finitely generated, R is noetherian. Now we need to show that $R_{\mathfrak{m}}$ is a DVR $\forall \mathfrak{m} \triangleleft \cdot R$:

Let I be a fractional ideal of R_{m}

$$
\begin{aligned}
& \quad \Longrightarrow I=\frac{1}{x} J, J \preccurlyeq R_{\mathrm{m}} \\
& \Longrightarrow J^{c} \preccurlyeq R, \text { in particular fractional } \\
& \stackrel{\text { By ass. }}{\Longrightarrow} J^{c} \text { is invertible and fin. gen., as } R \text { is noeth. }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{8.26}{\Longrightarrow} J=\langle y\rangle_{R} \text { principal, as } R_{\mathfrak{m}} \text { is local } \\
& \stackrel{8.28}{\Longrightarrow} R_{\mathfrak{m}} \text { is a DVR } \\
& \Longrightarrow \operatorname{dim}\left(R_{\mathfrak{m}}\right)=1
\end{aligned}
$$

Hence $\operatorname{dim}(R)=\sup _{\mathfrak{m}}^{\triangleleft \cdot R}$ $\{\underbrace{\operatorname{dim}\left(R_{\mathbf{m}}\right)}_{=1}\}=1$ and thus R is a DD b 8.17

Corollary 8.30. If R is a $D D$, then

$$
\operatorname{Div}(R) \stackrel{8.29}{=}\{I \mid \text { fractional }\} \cong \bigoplus_{P \triangleleft \cdot R} \mathbb{Z} \cdot P
$$

is a free abelian group with free generators $\boldsymbol{m}-\operatorname{Spec}(R)$ by

$$
P_{1}^{a_{1}} \cdot \ldots \cdot P_{n}^{a_{n}} \mapsto a_{1} \cdot P_{1}+\ldots+a_{n} P_{n}
$$

Remark 8.31. The following is an exact sequence of abelian groups:

$$
\{1\} \longrightarrow R^{*} \longrightarrow K^{*} \xrightarrow{\phi: x \mapsto\langle x\rangle} \operatorname{Div}(R) \longrightarrow \operatorname{Coker}(\phi) \longrightarrow\{0\}
$$

where

$$
\operatorname{Coker}(\phi)=\operatorname{Div}(R) /\left\{\langle x\rangle \mid x \in K^{*}\right\}=: \operatorname{Pic}(R)
$$

is the Picard group of R or the ideal class group of R.
If R is the ring of integers of an algebraic number field, then $|\operatorname{Pic}(R)|<\infty$ (this is hard to prove!) and it is called the class number of $K=\operatorname{Quot}(R)$.

Corollary 8.32. For a $D D R$, the following are equivalent:
(a) $|\operatorname{Pic}(R)|=1$
(b) $\operatorname{Div}(R)=K^{*} / R^{*}$
(c) R is a P.I.D.
(d) R is a U.F.D.

Proof.

- "(a) $\Longleftrightarrow(\mathrm{b}) "$ by 8.31
- "(c) $\Longleftrightarrow(\mathrm{d}) "$ by Exercise 36
- "(a) $\Longrightarrow(\mathrm{c}) ":$ Let $0 \neq I \preccurlyeq R$

$$
\begin{aligned}
& \Longrightarrow I \text { fractional } \\
& \Longrightarrow I \text { invertible, i.e. } I \in \operatorname{Div}(R) \text {, as } R \text { is a } \mathrm{DD} \\
& \Longrightarrow I \text { principal, as }|\operatorname{Pic}(R)|=1
\end{aligned}
$$

- "(c) $\Longrightarrow(\mathrm{a})$ ": Let I be any fractional ideal

$$
\begin{aligned}
& \Longrightarrow I=\frac{1}{x} I^{\prime}, I^{\prime} \leqslant R, x \in R \\
& \Longrightarrow I^{\prime}=\langle y\rangle, \text { as } R \text { is a PID } \\
& \Longrightarrow I=\left\langle\frac{y}{x}\right\rangle
\end{aligned}
$$

Corollary 8.33. Let R be a $D D$ and $h:=|\operatorname{Pic}(R)|$ the class number of R. Then $\forall I \preccurlyeq R: I^{h}$ is principal
i.e. the class number measures, 'how far away' the ideals are from being principal.

Proof.

$$
\begin{aligned}
& 0 \neq I \preccurlyeq R \\
\Longrightarrow & I \text { fractional } \\
\Longrightarrow & I \text { invertible, i.e. } I \in \operatorname{Div}(R) \\
\Longrightarrow & \overline{I^{h}}=\bar{I}^{h}=\bar{R} \in \operatorname{Pic}(R) \\
\Longrightarrow & I^{h} \in\left\{\langle x\rangle, x \in K^{*}\right\} \\
\Longrightarrow & I^{h} \text { is principal }
\end{aligned}
$$

Remark 8.34 (cf. Bruns, §15). Let

$$
R=\mathbb{Z}\left[\omega_{d}\right]=\operatorname{Int}_{\mathbb{Q}[\sqrt{d}]}(\mathbb{Z}), d \leq 1 \text { squarefree }
$$

in the notation of 8.22. How can we determine the class number of $\mathbb{Q}[\sqrt{d}]$? The idea is the following:
First, find all maximal ideals $P \triangleleft \cdot R$, such that

$$
|R / P| \leq \frac{2}{\pi} \sqrt{\left|\omega_{d}-\overline{\omega_{d}}\right|^{2}}=\frac{2}{\pi}\left|\omega_{d}-\overline{\omega_{d}}\right|
$$

where

$$
\left|\omega_{d}-\overline{\omega_{d}}\right|^{2}= \begin{cases}|d| & , d \equiv 1(4) \\ |4 d| & , d \equiv 2,3(4)\end{cases}
$$

There are only finitely many of these ideals and their classes generate $\operatorname{Pic}(R)$. Check then, how many different products can be built of these.

Example 8.35.

(a) $(d=-1): R=\mathbb{Z}[i]$ is a PID, so by $8.32|\operatorname{Pic}(R)|=1$.
(b) $(d=-19): R=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID by 1.41 (cf. Appendix), so again $|\operatorname{Pic}(R)|=$ 1. An alternative approach would be to consider

$$
\frac{2}{\pi} \sqrt{\left|\omega_{d}-\overline{\omega_{d}}\right|^{2}}=\frac{2 \sqrt{19}}{\pi}<3
$$

Then show that there exists no $P \triangleleft \cdot R$ with $|R / P|=2$. Hence follows that $|\operatorname{Pic}(R)|=1$ and from this, that R is a PID
(c) $(d=-5): R=\mathbb{Z}[\sqrt{-5}]$

$$
P=\langle 2,1+\sqrt{-5}\rangle \triangleleft \cdot R
$$

is not principal, since $R / P=\{\overline{0}, \overline{1}\} \cong \mathbb{Z}_{2}$ is a field. Hence $|\operatorname{Pic}(R)| \neq 1$.
Now consider

$$
\frac{2}{\pi} \sqrt{\left|\omega_{d}-\overline{\omega_{d}}\right|^{2}}=\frac{4}{\pi} \sqrt{5}<3
$$

If $Q \triangleleft \cdot R$ with $|R / Q|=2$, then $Q=P$, since:

$$
\begin{aligned}
& 1 \notin Q,|R / Q|=2 \\
\Longrightarrow & 2 \in Q, \text { since } \overline{1}+\overline{1}=\overline{2}=\overline{0} \\
\Longrightarrow & P^{2}=\langle 2\rangle \subseteq Q \\
\Longrightarrow & P \subseteq Q, \text { as } Q \text { is prime } \\
\Longrightarrow & P=Q, \text { as both are maximal }
\end{aligned}
$$

8. Valuation Rings and Dedekind Domains

Since $P^{2}=\langle 2\rangle$ is principal

$$
\begin{aligned}
& \Longrightarrow \bar{P}^{2}=\bar{R} \in \operatorname{Pic}(R) \\
& \Longrightarrow \operatorname{Pic}(R)=\{\bar{R}, \bar{P}\} \\
& \Longrightarrow|\operatorname{Pic}(R)|=2
\end{aligned}
$$

(d) $(d \leq-1$, without proof):

$$
\mathbb{Z}\left[\omega_{d}\right] \mathrm{UFD} \Longleftrightarrow d \in\{-1,-2,-3,-7,-11,-19,-43,-67,-163\}
$$

Index

R - algebra, 10
R - algebra homomorphism, 10
additive function, 30
algebraic, 92
algebraic number field, 137
algebraically independent, 92
algebraically independent $/ R, 110$
annihilator, 7 [23
artinian ring, 59
ascending chain condition, 59
associated primes, 79
Cartier divisor, 138
catenarian, 117
class number, 142
codimension, 85
cokernel, 21
contraction, 10
coprime, 7
Dedekind domain, 132
descending chain condition, 59
direct product, 4,22
direct sum, 22
division
by ideals, 133
embedded primes, 79
epimorphism, 9,21
exact sequence, 29
extension, 10
finite ring extension, 93
finitely generated R-algebra, 93
finitely generated module, 21
finitely presented module, 44
flat module, 43
formal power series, 4
free module, 23
generated ideal, 5
generated submodule, 20
Going-Up, 100
group
ideal class group, 142
totally ordered, 121
height of ideals, 85
height of prime ideals, 85
homomorphism, 21
I.D., 8
ideal, 4
fractional, 138
ideal group, 138
integral, 138
invertible, 138
principal, 138
idempotent, 8
image, 9,21
integral, 92,103
integral closure, 94,103
integral domain, 8
integrally closed, 95
intersection (of ideals), 6
isolated, 83
isolated primes, 79
isomorphism, 9, 21
Jacobson radical, 14
kernel, 9,21
Krull dimension, 66
leading coefficent, 64
linear map, 21
local, 18, 54

Index

localisation, 48
localisation at f, 49
localisation at P, 50
locally free, 57
Lying-Over, 99
m-Spec, 13
maximal ideal, 13
minimal primary decomposition, 73
minimal prime ideal, 85
minimal primes, 79
module, 20
module quotient, 22
monomorphism, 9, 21
multiplicatively closed, 47
nilpotent, 8
nilradical, 14
Noether Normalisation, 111
noetherian R-module, 59
noetherian ring, 59
normal rings, 95
normalisation, 95
order
ideal's prime factors, 133
Picard group, 142
polynomial ring, 5
Prüfer group, 62
primary decomposition, 73
primary ideals, 73
prime ideal, 13
principal ideal, 5
product (of ideals), 6
projective module, 44
puiseux series, 127
pure tensor, 38
quotient (of ideals), 6
quotient field, 49
quotient module, 20
quotient ring, 5
R-module, 20
radical, 6
reduced rings, 95
regular, 89
ring, 3
ring extension, 9
ring of integers, 137
ringhomomorphism, 9
short exact sequence, 29
Spec(R), 14
spectrum, 14
split exact sequence, 29
submodule, 20
subring, 4
sum (of ideals), 6
symbolic power, 85
tensor product, 36
torsion module, 22
total quotient ring, 49
total ring of fractions, 49
transcendence degree, 111
transcendental, 92
unit, 8
valuation, 121
discrete, 122
valuation ring, 121
discrete, 122
vanishing ideal, 109
vanishing set, 109
zero-divisor, 8
Zorn's Lemma, 15

