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1. Rings and ldeals

A). Basics

Definition 1.1. A (commutative) ring (with 1) (R, +,-) is a set R with two binary
operations, such that

(a) (R,+) is an abelian group
(b) (R,-) is associative, commutative and contains a 1 - element.
(¢) The distributive laws are satisfied.
Note.
e We will say “ring”, instead of “commutative ring with 1”.
e We will usually write “R”, instead of “(R,+,-)”.
e Only the multiplicative inverses are missing for a field.

o If O = 1, then R = {0}

Proof. Let r € R. Then

0O+r=0+1-r=0+1)-r
=(1+4+1)-r=r+r
— r=0

Example 1.2.
a) Fields are rings, e.g. R, Q, (C,Z for p prime.
pZ
(b) Z is a ring



1. Rings and Ideals

(c) If Ris a Ring = R[z] = {3 7 ) aaz® |as € R}, where:

= (T1, ..., Tp)
a:=(ag,..,a,) € N?
g% = g . gOn
z ez
la] i =a1 4+ ... + ap

is the ring of formal power series over R in the indeterminance z1,...,z,. The
operations are defined as

oo oo o0

> aaz®+ > baz® = (aa +ba)z®
|| =0 || =0 lee|=0

oo o0 oo
> aaz® Y bz’ = (> aabs)a?
=0 181=0 [1=0 a+p=y

Notation:

> if o, =0 V
Ol"d(z aaga) — {OO,I a o

|a|=0 min{|al s.t. aq # 0} , otherwise

(d) R{z}, C{x} are the rings of convergent power series over R and C.

(e) If M is a set and R a ring, then RM := {f : M — R| f is a map} is a ring with
respect to :

(f +9)(m) := f(m) 4+ g(m)
(f-g)(m) = f(m)g(m)

(f) If Ry, A € Ais a family of rings, then [],., Rx = {(ax)rea | ax € Ra}, the direct
product, is a ring with respect to componentwise operations.

Definition 1.3. Let (R,+,-) be aring, I C R

(a) I is a subring of R :<= (I,+,") is a ring with respect to the same operations
restricted to I.

(b) I is an ideal of R : <=
« T £
eVabel:a+bel
eVaclreR:racl
Notation: I <R



1. Rings and Ideals

(n:= (7

ICJLR
= {Zriaim € N(),’f‘i S R,CLi c I}
i=1
is the ideal generated by I.
(d) If I = {a}, then (a) = aR := {ar|r € R} is a principal ideal.

(e) If I < R, then
R/I::{T+I|T€R}

is the quotient ring and it’s a ring with respect to operations via representatives.
Example 1.4.
(a) Zp :={;%|a€ZneN} <Qfor p prime
(b) Let R be a ring.

Rlz] :={ Z aoz™|aq € R,n € N} < R[z]
|| =0
is called the polynomial ring in the indeterminance (z1,...,2,) = . We define:

~ — if aq = 0V,
deg(z aaxa):{ o0 1 a o

a0 max{|a| s.t. aq # 0} else

(¢) Ris afield <= {0} and R are the only ideals.

Proof. We show two directions:
“ é 77:
I QR,I#{0}
= dae€l:a#0

—JateR
1

—a a=1€l
—VreR:r-1=rel
— I =R



1. Rings and Ideals

“—=":Let 0#r € R, then0+# (r) <R

= (r)=R,but1 € R
—dseR:sr=1
— R is a field.

O
(d) IQZ < Ine€Z: (n)=1I. In particular, every ideal in Z is a principal ideal.

Proof.

“«=" is trivial.
“=7: If I = {0}, then I = (0), so let I # {0}. Choose n € I minimal, such
that n > 0. We want to show that I = (n):

“D?V . \/
“C”:Letael
d.w.r.

="dg,r€Z:a=gqn+r0<r<n
= r=a—qnecl
S Q)

= a=gqn € (n)

O
(e) Let K be a field, then I < K[z] < 3f € K[z]: [ =< [ >
Proof. As for the integers, just choose f € I\{0} of minimal degree O
(f) Let K be a field, then: T < K [z] < In>0:1= (z")
Proof. postponed to [L8 (c) O

Definition 1.5 (Operations on ideals).
Let I,J,Jy SR\ €A
o I+ J:=({IUJ)y={a+blacI,be J} <R isthe sum (of ideals).
e INJ:={ala€l,ac J} <R is the intersection (of ideals).
I-J:=({ablaecl,be J}) <R isthe product (of ideals).
I:J:={a€R|aJ CI} <R isthe quotient (of ideals).
e VI:=rad(I):={a € R|3n>0:a" € I} < R is the radical of I.
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Proof. (that VI < R)
0 el = 0eVI = VI#0
—acVIreR= n:a"cl = (ra)"=r"a" €l = racI

—a,beVI = Inm:a"b" el

— (a+b)mtm =3 (") akprtmk € |

Note.

o VI-J=VINnJ

Proof.
Hg”:/
“:geVINJ = In:a"clnJ = a* =a"a" €l -J = acVI-J

O

o We call
anng(I):=ann(I):={0}: I ={a € Rlal ={0}} ={a € Rlab=0Vbe I} <R

the annihilator of I.

® Denni= <U>\eA JA>

= {Z ax|ay € Jy, and only finitely many a) are non—zero.}
AEA
* Mer /A <R
e [ and J are called coprime :<—= I+ J=R <= 1e€l+J
Example 1.6. Let R=7,1 = (n),J = (m) for n,m # 0
o [+ J={(n,m)= (ged(n,m))
e INJ = {lem(n,m))
o [-J=(nm)

. _ n _ /lem(n,m)
I'J_<gcd(n,m)>_< m >

VI={(py-..-pp),ifn= Hle p;* is the prime factorization of n.
ann(I) = {0}
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e [,J are coprime <= Z =1+ J = (ged(n,m)) <= ged(n,m) =1
Definition 1.7. Let R be aring, r € R

(a) ris a zero-divisor :<= 0 # s € R:rs =0 < ann(r) # {0}
Note. If R # {0}, then 0 is a zero-divisor by definition. If r is not a zero-
divisor, the cancellation laws hold: ar = br = a = b. (short proof: ar =
br = (a—b)r=0= a—b=0)

(b) R is an integral domain(I.D.), if 0 is the only zero-divisor.

(¢c) reRisaunit :<= Is€ R:sr=1
Note. R* ={a € R|a is a unit} is a group with respect to multiplication.

(d) ris nilpotent : <= In > 1,st. r* =0
Note. If R # {0}, then we have:

e 7 nilpotent = r is a zero-divisor
e V0 ={a € R|a is nilpotent}

(e) ris idempotent : <= r?> =r < r(1—r) =0
Note. If r ¢ {0,1} is idempotent, then r is a zero-divisor. Furthermore, 0 and
1 are always idempotent.

Example 1.8.
(a) Zisan LD., Z* = {1, -1}
(b) If K is a field, then K[z] is an LD. and K[z]* = K* = K\ {0}
(¢) Consider R [x], R any ring.
(1) R=]"={f € R[2] | f(0) € R*}

(2) x is not a zero-divisor

(3) f =32, fiz" is nilpotent = f; are nilpotent Vi
Proof. Exercise. O

(4) Proof. (of LAl (f) )
Claim: 0 # I < K [z], K afield <= In>0:1 = (2™)

o “«—": trivial
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e “=": Choose 0 # g € I,g=> 2, g;x' with minimal ord(g) =n

oo
—=g=a" Z gix' ™"
i=n

———
:=h

h € K [z]* (since h(0) = g, # 0)
=" =gh tel, sincegel
= (") C I

LR (c.1)
=

Now let 0 # f € I be arbitrary

= ord(f) > n, by definition of g

= f=2a" ifixi_” € (™)

i=n

——
€K [xz],i—n>0

(d) R= K[x]/<x2> — 0 # 7 is nilpotent, since z2 = 0

(e) R= Klz, y]/<x ) = 0 # 7 is not nilpotent, but a zero-divisor, since zjj = 0
(f) R=Z®7Z = (1,0) is idempotent.
Definition 1.9. Let R and R’ be rings.
(a) ¢ : R — R’ is a ringhomomorphism (or a ring extension) : <
o p(a+b)=gp(a)+ ()
* p(ab) = p(a)p(b)
o p(lg) = 1p

Notation: Hom(R, R') = {¢ : R — R’| ¢ is a ringhom.}
Note. R’ is an R - module via rr’ = o(r)r’

(b) Let ¢ € Hom(R, R’)
e Im(p) := p(R) < R’ is the image of ¢
o ker(p) := ¢~ (0) <

e is a monomorphism/epimorphism/isomorphism : <= ¢ is injective/surjective/bijective
Note. ¢ is a Monom. <= ker(¢) = {0}

R is the kernel of ¢
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(¢) Let ¢ € Hom(R, R'),I < R,J < R’. Then we define:
o [¢:=(p(I))p the extension of I to R’
e J¢:=p 1(J) < R the contraction of J to R
(d) Let ¢ € Hom(R, R’), then we call (R, ) an R - algebra. Often we omit .
Given two R - algebras (R’, ) and (R”,4) an R - algebra homomorphism is a

map « : R — R, which is a ringhom. such that

R/ o R//

1.4

R

commutes, i.e.: xop =1
Lemma 1.10. Let ¢ € Hom(R,R'),I < R,J < R'. Then:
(a) I D 1
(b) JeecJ
(c) I = I¢
(d) Jeee = Je

Proof.
(a) ael = a€pl(p(a)) Cp'(I°) =1

(b) Je = <90(s01(J))> C()y=1J
—_———
cJ R
(c)
“277: m (a) :> IEC 2 I :> IeCe 2 Ie
“C: Apply [ICIT (b) to J := I

LL:_)”: Jc <] R/ E:gjcec :_) Jc
ugw: m(b) — Jce g J — Jcec g JC

Theorem 1.11 (Homomorphism Theorem).

Let ¢ € Hom(R, R')

10
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(a)

?: W er(p) — (@), = (r)
is a ringisomorphism.
(b) I 9 R < I is the kernel of some ringhom.
(¢) If I < R, then:
{JQR|ICJ} = {J <R/}
J— J/I
is bijective.
Proof. (Easy exercise) O]
Theorem 1.12 (Chinese remainder theorem).

Let R be a ring, I,...,Ix < R,
k
@:R—>HR/IZ,:7“»—>(F,...,F)
i=1

(a) If I, ..., I, are pairwise coprime, then
k
ﬂ[izll-...lk
i=1

(b) @ is surjective <= I,..., I, are pairwise coprime.
(c) @ is injective <— ﬂle I, = {0}

Note. In particular we have that for Iy, ..., I pairwise coprime:

k
R/11 L= HR/Ii
=1

Proof.
(a) We do an induction on k:
o k=2: Show 1Nl =1, -1
o7V

“C’: R=L+1I, = 1=a+b,ac 1,be l,. Let c € I NIy be arbitrary
— c=c-1= ca + cb €l -1
~—~ —~—
cl-1I> cl-1I>

11



1. Rings and Ideals
e k —1 — k: By assumption we have aq,...,ar € I1,b; € I;, such that
1=a;+ b; Vi.

:>b2~...-bk:(1—a2)-...-(1—ak)

=1+ a for some a € I;

= 1= —a +by-...- by €I1+(I21k)
~ ~—
el €lz-...- Iy,
Thus we have that I; and I - ... - I} are pairwise coprime.

=L L L)=Ln(L .. 1)

A IN...N )

(b) We prove two directions:

“<=": Choose a;, b; as in the proof for (a).
1 dI
ﬁbg-..mbkE{ o !

— by - - by) = (1,0,
= o(rby - ... - by) = (7,0,...,0) € Im(¢p)

Analogously we have that (0,.., 7 ,..,0) =:7e; € Im(p)Vr € R,i = 1.k

~—~
at i
k
= (r1,.7) = Y 7Tie; € Im(p)
=1

“=": Let i # j € {1..k} be arbitrary. Then we have the following surjective chain
of homomorphisms:

R

> HR/[i — R/[i@R/[j

[ (F7 7F)7 (T_la "'ar_k) e (’Fur_j)
= Ja € R, such that (7o p)(a) = (1,0) = (a,a)

— a=1 mod I;
=0 mod I;

= ac€ljanddbel;:a=1+b Thuswehavel=a—-be l; +1; =
I;,I; are coprime.

12
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ker(p) ={r € Rl¢(r) = (0,...,0)}
={reR|r=0 mod I; Vi}
={reR|rel,Vi}

:ﬂ[i

Example 1.13. R=7Z,I, = (2),I, = (3),I3 = (11)

z
:}
/<2.3-11
—

> =22, eLay 0%y
66

This means that, given aj, as, a3 € Z there exists a unique z € {0,..,65}, such that

B). Prime ldeals and Local Rings

Definition 1.14.

(a) m< R,m C R is a mazimal ideal : <= VI R: mC [ = [ =R) < R/mis
a field (by [LIT] (c) and 4l (c))
Note. We write: m < - R and m — Spec(R) := {m|m < - R}

(b) P<K R,P C Ris a prime ideal : <= VI,J S R:(I-JCP = ICPor
JCP)
<(=*)>Va,b€R:(abEP=>a€Porb€P)
<:>R/P is an I.D.
=V, . [, <SR: (I ... ,CP = 3i:1;C P)
=Vay,...ax € R: ([[ai € P = Ji:a; € P)

Proof. (of (*))

13
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o “—": Leta,be P

= (ab) = {(a) (b) C P
= (@) CPor () CP
—a€PorbeP

e “<": Suppose I,J < R,such that I-JC P,but ¢ P,J ¢ P = Ja €
I\P,b e J\P, but ab € P}

O
Note. Spec(R) = {P| P is prime ideal of R} is called the spectrum of R.
(c)
J(R):= [ m<R
m<- R
is the Jacobson radical of R.
(d)
w(r):= (P2 {0} ={aeR|3n:a" =0}
PR prime ideal
is the nilradical of R.
Note.
*(Pam) = 0
Proof. “27” is trivial, we only show the other inclusion:
(a+RR)"=0=a" +R(R)

=a" € N(R)

=3Im: (a")" =0

=a € R(R)

=a=0

O
Proposition 1.15.
ISR = ViI= NP

PR prime ,JCP

Proof.

14
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aeﬁandPglRprime,s.t.IgP. Show a € P :

aE\ﬁz>E|n:a"€I§P

P prime
— a

eP
Let 7 € R\W/I. Show: 3P < R prime, s.t. I C P and r ¢ P: Therefore set

M:={J<QR|ICJandr" ¢ JVn>1}

Then M # (), since I € M and M is partially ordered with respect to inclusion
of sets.

Note. We now have to use Zorn’s Lemma:

“Let (M, <) be a partially ordered set s.t. any totally ordered subset of M has
an upper bound in M. Then M has a maximal element with respect to <.”

If we now have a totally ordered subset J C M, then:

UJQRandIQ UJandr"§Z UJVnZl
JeJg JeJg JeJg

Thus UJeJ J € M and it is an upper bound for the chain. Thus, by Zorn’s
lemma, we have a P € M, which is maximal in M with respect to “C”. We
claim: P is a prime ideal:

Suppose a-b € P,s.t. a ¢ P,b¢ P

= {(a,P),(b,P) 2 P

= (a,P), (b, P) ¢ M, since P is maximal in M
= 3dn,m:r" € (a,P) ,r"™ € (b, P)

— 1" € (0, P) (b, P) C {ab, P) € Pé pens

Hence P is prime and I C P and r ¢ P.

Example 1.16.

(a)
(b)

m — Spec(R) C Spec(R)

e m— Spec(Z) = {(p) |p prime}
e Spec(Z) =m — Spec(Z) U {(0)}
o J(Z)= {0}

e N(Z) = {0}

m — Spec(K [«]) = {{z)}
Spec(K [x]) = {(x), (0)}

15
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J(K [2]) = (x)
R(K [z]) = (0)
m— Spec(K[z]) = {{f) | f irred.}
Spec(K[z]) = m — Spec(K[z]) U {(0)}
J(Kz]) = R(K[z]) = (0)
(e) Let K be algebraically closed. We will see in
e m—Spec(K|[z,y]) = {{x —a,y — b) |a,b € K} (by Hilbert’s Nullstellensatz)
e Spec(Klz,y]) = m— Spec(K[z,y]) U{(f) | f irred.} U {(0)}
o J(K[z,y]) = R(K[z,y]) = (0)
(f) Let K be an algebraically closed field. One can show that:

=
~—
[ ] [ ) [}

o m— spec(K[w’y]/@w) = {(z=a,y—b)a=0orb=0}
o Spec(K1:8L7, 1) =m—Spec(.) U {(2), ()}
o« (Bl =@l vl = ()
(&) o Spec(Kl)2) = m—Spec(Kl) 2) = {(2)}
o 7Bl ) =Kl o) = (3)
(h) Spec(Z[z]) = {(f,p) | f is irved in 2/ 7[a],p € PYU{(f) | f irred.} U {(0)}

Proposition 1.17 (Prime Avoidance). Let I < R; Py, ..., Py_2 € Spec(R); Py—1, P < R.
Then we have:

k
Ic|yp = 3i:1CPp
i=1
Proof. We do an induction on k.
e k=1 V

e k = 2: First, we'll need the following argument: W.lo.g. we have that I ¢
U, £ P; for all 7, since otherwise the respective P; can be removed, so that we
can apply induction and are done. So assume

3%6HUEQH
i#]

16
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Leta1+a2€IgP1UP2.

— a1 t+as € PLora; +as € Py
= ay=(a1+az)—ar € Prora; € P,
This is a contradiction to the choice of the a;.4

e k£ > 3 Choose the a; as above and let ¢ := a7 +as-...-ap € I C U§:1 P, —
di: a € P;. We consider two cases:

— (i=1)

= a1 +ay:..-ap € Py
= as ... a € Py since a1 € P;
=3dj#1:a;€ Py

— (i >1). Since ag-...-ay € P, = a1 =a—az-...-a € P;4. So there exists
an ¢, such that I C |, oy P; and we can apply induction.

O
Lemma 1.18. Let I A R, I C R

— dn<-R: ICm
Proof. Let M ={J < R|J C R, I C J} # (), since I € M. M is partially ordered
with respect to inclusion.

Now let
JCM

be any totally ordered subset of M and
J=|J J <R
Jeg

It is clear that I C J. We need to show, that J # R (then J € M and J is an upper
bound for the chain):

Suppose J=R>1 = 3J € J:J' 351 = J =R

Zorn

= J# R = ~3J~ € M maximal with respect to inclusion. Our claim is now, that
J<-Rand I C J:

e ICJ: Vv, since Je M

e Suppose 3J' < R,J" C R and JcJ. Then we have J' € M, which is a
contradiction, since J is maximal in M. Thus J is a maximal ideal.

O

17
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Lemma 1.19.
a€JR) <= VbeR:1—abeR"

Proof.
e “—": Suppose 1 —ab ¢ R* for some b € R, but a € J(R)

= (l—ab) #R
I8, . R:(1—ab)Cm

=1=(1-ab)+ ab emé since m # R
n ()
€

e “<": Suppose dm < - R, such that a ¢ m.

— G (n,a)

"8 ma) = R

—1l=m+abwithmembeR
= l—ab=m¢€cm

——

ER*
= m=R 4

O

Definition 1.20. A ring R is called local : <= R has a unique maximal ideal (<=
J(R) <-R)

Example 1.21.
(
(b

a) Fields are local rings, J(K) = (0)
)
)
)

K [z] is a local ring, since J(K [z]) = (z)
(c
(d

R{z}andC{z} are local rings with Jacobson radical (x)

K[z] and Z are not local, since for example (2),(3) < -Z and (z),{x +1) <
- K[x].

Lemma 1.22. The following statements are equivalent (for R # 0):
(a) R is local
(b)) Im<-R: YVacmbe R: 1 —abe R*
(¢c) Im<-R: VYacm:14+a€ R*
(d) R\R* < R (in that case we have J(R) = R\R*)

18
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Proof.

e “(a) = (b)”: See[ I since J(R) =m

o “(b) = (¢)”: clear with b= —1

o “(¢) = (d)”: We have to show that m = R\R*:

“C”: v, since otherwise m = R

“D7: Letb¢m
=m C (m,b)
= (m,b) = R( since m < - R)
=1l=m+ab

= ba=1-m=1+(—-m)
———
€R~

—=baoec R* =— be R*

o “(d) = (a)’: Letm<-R

—mC R\R* <R
=>m = R\R" since m is maximal and R\R* C R

19



2. Modules and linear maps

A). Basics

Definition 2.1. Let R be a ring.

(a) An R-module or module is a tuple (M, +, ), where M # (Qisaset, +: M xM —
M,-: R x M — M binary operations such that Vm,m' € M,r,s € R:

(1) (M,+) is an abelian group
(2) (Generalized distributivity:)

r-(m+m’)=r-m+r-m

(r+s)-m=r-m+s-m
(Generalized associativity:)

r-(s-m)=(r-s)-m

3) 1-m=m
(b) Let M be an R-module and N C M. Then N is a submodule of M
:<= (N, +|n,|n) is an R - module
<= (N,+)isagroup and rn € NVr € Rne N
—=Vn,n e N,r,r" €eR:rn+1r'n" €N
In that case we write N < M.

(¢) Let M be an R-module, N < M. Define on the quotient group (M/N,+) a
scalar multiplication by
rm=7rm

Then this is well-defined and (M/N, +,+) is an R-module, the quotient module
of M by N.

(d) Let M be an R-module, J C M.

n

<J> = ﬂ N:{Z’MMHTLGN,MER,miGJ}SM
JCN<M i=1

the submodule generated by J.

20



2. Modules and linear maps

(e) An R-module M is fintely generated

<~ dImy,...my, € M : M = (mq,...,my)

(f) Let M, N be an R-module. Then a map ¢ : M — N is called R-linear or an
R-module homomorphism

i Vr,r' € Rom,m/ € M : p(rm +1r'm’) = rp(m) +r'o(m’)
Notation: Hompg(M,N) = {¢: M — N | is linear}

(g) Let ¢ € Homp(M, N). Then we call ¢ a monomorphism,epimorphism,isomorphism
1 <= ( is injective, surjective, bijective.

e ker(p) := ¢~ 1(0) < M is the kernel of ¢
e Im(yp) := (M) < N is the image of ¢
. N :
e Coker(p) := /Im(go) is the cokernel of ¢
Note. Coker(yp) =0 < ¢ is surjective
(h) Let M, N, P be R-modules, ¢ € Hompg(M, N). Then:

¢* : Homg (N, P) — Homg(M,P) : ¢p — thop
s : Homp (P, M) — Hompg(P,N) : ¢ — @ o)

(i) An R-module M is simple if it contains only the trivial submodules {0} and M.
Example 2.2.

(a) K-vector spaces correspond to K-modules (where K is a field)

(b) Ideals are the submodules of the R-module R

(¢) ¢ € Hom(R, R'), M an R’-module, then

rom :=p(r)m
€R eM
makes M an R-module.
(d) (M,+,-) is a Z-module <= (M, +) is an abelian group
Proof. (only for “«<=")
z€Z,meM = z-m:=m*in (M,+) O

(e) Homp(M, N) is an R-module via

(e + ) (m) = o(m) + ¢(m)
(re)(m) = ro(m)
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(f) ¢*, @« are R-linear
(g) M = Hompg(R, M) by m — (R — M,r — rm)

Proof. Exercise 0

(h) Let M an R-module, ¢ € Hompg(M, M). Then M becomes an R[z]-module via
2 m = p(m)
(Then (3 a;z%)ym = 3" a;pt(m))
(i) In general we have M 2 Homg(M,R), e.g. R=7Z and M =Z/2Z.
Definition 2.3 (Operations on modules).

(a) Let My be an R-module, A € A
TTMx = {(ma)rea |ma € My VA € A}
AEA
is an R-module by componentwise operations and is called the direct product of
the M)’s.
@M,\ := {(mx)xea | only finitely many m, are non-zero} < HM)‘
PN AeA
the direct sum of the My
(b) Let I < R, M an R-module, N, N’ My < M, X € A
e N My<M

AEA

e > M, = < U MA> = { > mx|mx € M, finitely many non-zero}
AEA AEA AEA

o Tor(M):={me M|3re R:rm =0 and r is not a zero-divisor} < M
is the torsion module of M

Proof. m,m' € Tor(M);r,r" € R not zero-div. and rm = r'm’ =0
/ /
rr m+m')=20
g ( )
not zero-div.

= m+m’ € Tor(M) O

o [ -M:=(am|laelmeM)<M
e N: N :={re R|rN'C N} < R is the module quotient of N by N’
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2. Modules and linear maps

o annp(M) :=ann(M) := {r € R|rm = 0Vm € M} < R is the annihilator
of M.

o Let M be an R-module, my € M, A € A.M is called free with generators
(m)\, A E A)

IR

= DrepaR——M

exF———=>m)
is an isomorphism.

<= VR —modules N and ny € N, X € A:

31 R — linear map M — N, m) — n)

Notation: rank(M) := |A]
Note. rank(M) is well-defined and rank(M) =n < co <= M = R" (by
def.)

Proof. (well-definedness:)
Let M be free with respect to (my)xea and with respect to (my)aeas

We have to show: |A| = |A/]
(1) “IA| = oo™
m, = Z axmy; Ty, C A finite, Vu € A/
\ET,

= A= U T,, since (my) is a minimal set of generators
e’

= |A| < Z |T,| < |A’| IN| = |A’| (since \A’\ < oo = |A] < o04%)
HEN
= A < A

Analogously |A'| < |A] = |A| = ||
(2) “|A] < 00” postponed to 214

Example 2.4.

(a) M an R-module = M is an R/ann(M)—module via

rmi=rm
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2. Modules and linear maps

(b) R=Kla,yl. M =Ty 0 F

= anng(M) = (zy)

(¢) N:N' =amp(™N TV )
(d) Z/2Z is not a free Z-module.

(e) A minimal set of generators in a module is in general not a basis, e.g. Z = (2, 3),
this is a minimal generating set but no basis.

Theorem 2.5 (Isomorphism theorem). Let N, N', M, L modules.
(a) ¢ € Homp(M, N)
= M/ker(w) = Im(p)
by: m +— p(m)
In particular: ker(p) = {0} <= ¢ is injective

() N<M<L
%N ~ L
— /(M/N)_ M
(¢) N,N' < M
= Nyan 2Ny
(@) N<M

/ / ~ ~ - M ’ N’
= {N'<M|NC N} —{N|N <Y/ NhN ="y
is bijective.

Proof. As for vector spaces O

B). Finitely generated modules

Theorem 2.6 (Cayley-Hamilton). Let M be a finitely gen. R-module, I < R, €
Hompg (M, M).

If (M) C I- M, then there exists
Xo =" +p12" 4+ ...+ p, € R[]

such that p; € I and x,(p) =0 € Homg(M, M)
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2. Modules and linear maps

Proof. Consider M as an R[x]-module via

Let M = (mq,...,my,)

— @(mz) = Zaijmj, ai; € I, since QO(M) cClI-M
j=1

mq n 0
=(ay; TMy = Y g a1y p(m1) — p(ma)
Ai=(gsi) (x-I,—A) -| : :< =1 >:< . =|:
S——— : :

€Mat(nxn,R[z]) My

where [, is the identity matrix. Thus by Cramer’s rule we have that

0 my
= (zI, — A)¥ (zI, — A)
—_——
0 adjoined matrix mpy
my

=det(zl, — A)- I -
det(...)mq

det(...)my,

= det(zl, —A)m =0Vm € M

= det(xl, — A) € anng, (M)
S —

= Xe

Then by the Leibniz formula we have that

R[z] 5 xp = 2" +p” 4 pn, pie It

and thus x.,(¢)(m) © Xo - m=0
= Xo(p) =0 € Homg(M, M) O

Remark 2.7. Let M be finitely generated and ¢ : M — M R-linear. If o is injective
+ @ is bijective, e.g.
p: 7 — L,z 2z

is injective, but not surjective.
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Corollary 2.8. Let M be a fin. gen. R-module, ¢ € Hompg (M, M). Then:

p 18 surjective <= ¢ 1is bijective

Proof. We only need to show “=":

Consider M as an R[t]-module via tm := @(m) and let I = (t) < R[t] and idy; €
HomR[t] (M, M)

Since ¢ is surjective = I-M =1t¢-M = (M) = M = idp(M). Then by 20l there

exists
n—1

Xidy = 2"+ Y _ pn_iz’ € R[t][x]
=0

with p; € <tj> and

n—1

0 = Xidy, (idar) = idas + an—i idas

i=0
Now set ¢ := E1t=Pa € R[t] (by def. of the p;). Then we have:

n—1
idar(m) = (= pniidar)(m)
=0

¢
=(=q)-t-m=((—q(p)) op)(m)
Thus idyr = o (—q(p)) = (—q(p)) o ¢ U

Corollary 2.9 (Lemma of Nakayama, NAK). Let M be a fin. gen. R-module and
I < R, such that I C J(R). Then:

I - M=M = M=0

Proof. Apply to ¢ = idps

= Ip1,sn €1 (1+p1+...+pp)idyy =0

=VmeM:(1+p1+...+p,)m =0

= 1+4+p1+...+py € anng(M)
—_———

€ICJ(R)
| —
€R* by L. 1Y

—anng(M)=R
= M =0, sincel -m=20
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2. Modules and linear maps

Corollary 2.10 (NAK 1). If (R,m) is local, M a fin. gen. R-module, uM = M, then
M=0

Proof. J(R)=m O

Corollary 2.11 (NAK 2). If (R,m) is local, M a fin. gen. R-module, N < M and
N 4+wmM = M, then
N=M

Proof.

m(M/N) _ (mM+N)/N:M/N
— M ;=0 (by NAK 1)
— M=N

O
Corollary 2.12 (NAK 3). Let (R,m) be local, 0 # M a fin. gen. R-module. Then:
(ma,...,my,) is a minimal set of generators for M

<~ (m1,...,My,) is a minimal set of generators for M/mM

Note. m<1-R = 4 is a field = M/ 1 - is a fin. gen. ©frmodule = M/,

is a finite dimensional vector space over R/m.
Proof. We show two directions:
o “—=": Set N := (mq,...,my) <M

:>(N+mM)/mM = <W1>7Wn> = M/mM

— N4+uM=M"2E*N =M

= my,..., My is a generating system of M

Suppose that m; is superfluos. Then

(UL, ooy TG 1, T 1y ey Ty) = M/mMé

o “=7: Clear (M1, ,My) = M/mM' Suppose 7; is superfluos. Then by “«<="

<m17"' 7mj717mj+17"' 7m’n> :Mé
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2. Modules and linear maps

Corollary 2.13 (NAK 4). Let (R,m) be a local ring; N,M fin. gen. R-modules,
» € Hompg(M,N). Then:

18 surjective <= ©: M/mM — N/mN s surjective
Proof. We only need to show “<=":
Let © be surjective
_ coker(@) = ).~ M) ~ N
= 0 = Coker(p) = “Tm(p) = /() +mN . 3= Im(p) +m)

= N =Im(yp) + mN and by NAK 2: N =1Im(p) and thus ¢ is surjective. O

Remark 2.14.
P
R"=R" = m=n

In particular the rank of a free and finitely generated module is well-defined

Proof. Suppose n > m. Consider

e, t<m
@0:R" - R™ e T

0, else
= ( is a surjective, R-linear map.

Then poy : R™ — R" is surjective and and by [Z8 bijective. But (¢ o¢)(e,) = ¥(0)

o

0.
Proposition 2.15. M is finitely generated <= Jp : R™ — M R-linear
Proof. We show two directions:
o “=": M= (my,..,m,) = p:R"— M, e; — m;
o “==": p:R"» M = M = (p(m1),...,o(my))
O

Remark 2.16 (Fundamental thm. of fin. gen. modules over P.1.D.’s). Let R be a
P.ID., M a fin. gen. R-module. Then:

(a) M = Tor(M) ® R™ for a unique n € Ny.

(b) Tor(M)=._, R/<pqq,>, where p; is prime, «; > 1 uniquely determined.

Proof. too hard. O
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2. Modules and linear maps

Example. R=7

= M is an abelian group, fin. gen.

_gn L v Z R
= M=7Z"® /<ptz;m>EB...69 /<p?,.>,p1 prime.

C). Exact Sequences

Definition 2.17.
(a) A sequence M —“ >N LA P of R-linear maps is called ezact at N

i<= Im(p) = ker())

$1 P2 ¥$3 Pn—1

M, of R-linear maps is called

(b) A sequence M, Mo, M
eract : <= Is is exact at M; Vi € {2,...,n — 1}

(¢) An exact sequence of R-linear maps of the form 0 M N P
is called a short exact sequence.

short exact sequence - is called split
d) A sh 0 M —s M —2s M 0 lled spl

exact : <= 1 € Hompg(M", M), such that p o =idpsm.

Example 2.18.
(a) M —%2 > N——>0 isexact at N <= ¢ is surjective

(b) 0——=M —% » N isexact at M <= ¢ is injective.

(¢) O MNP 0 is exact <= ¢ is injective, 1) is surjective

and Im(y) = ker(¢))

-2

(d) 0 Z Z Z/2Z 0 is exact.

(e) ¢ € Homr(M,N) =

@

0 —— ker(yp) M N Coker(¢) — 0 is exact.

0 ——=ker(p) —= M —4 Im(p) —— 0 is short exact.

(f) N<M =

0 NC M M/N ——= 0 is exact.
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2. Modules and linear maps

(g) Every “long” exact sequence splits into short ones and is composed by short ones.
Thus, studying exact sequences is reduced to studying short exact sequences!
How to do this (the ’triangular’ sequence is the resulting short sequence, all

these short sequences are ’stitched together’ at the 0’s):

/\

m(p;—1) = ker(y;)

Conversely, if we have given:

H—l

ker (pit1)

T,

0—— anl : Mnfl — Mn
0—— Kn72 s Mn72 T anl 0
0 K —2 M —— 5K, 0
My —2 > K, 0
we construct an exact sequence
MO 1107 M1 1007 - Mn,1 Tn—1 Mn

Definition 2.19. Let M be a class of R-modules, which is closed under submodules,
quotient modules and isomorphisms. A function A : M — N is called additive on M

i< for all M, M’ M" € M:

For all exact sequences 0 M M M
AM) = XM'") +\M")
or equivalently: V M € M and N < M we have:

AM) = AN) +AM )
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Example 2.20. R = K afield, ® := {V |V is a K—vector space with dimg (V) < oco}.
Then:
A= dimK

is additive.

Proposition 2.21. If A is additive on M and

O MO %00) Ml Y1 M2 P2 Pn—1 Mn $n 0
is exact with M; € M, then:
S (“1)A(M) = 0
=0
Proof. Since
0 ——=ker(p;) —= M; ——Im(p;) ——0
is exact, we have that
A(M;) = MIm(p;)) + Aker(;))
Thus
D (ED)AM) =D (=1 (Mker(p:) +A(Im(p:)))
i=0 i=0 —
=A(Im(pi-1))
= Aker(0)) + (=1)" A(Im(¢pn))
=0 =0
=X0)+ (=1)"A(0) =0
Note. Since 0 0 0 0 0 is exact, we know that A\(0) = A\(0) +

A(0) = 2A(0) and thus A(0) = 0.

O

Proposition 2.22 (Snake lemma). Let the following commutative diagram of R-linear
maps be given:

0 M 2> M M 0
iv, iw iw,,
0 N N 0
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2. Modules and linear maps

Then consider the following diagram:

0 0 0
/ < B m 6
() 0—=ker(%) ker(p) ker(”) * >
, a B 1"
(%) 0 M M M 0
Lpl Lp SD//
(+) 0 N NP N 0
(o) e Coker(¢") o Coker(¢p) LN Coker(¢") ——0
0 0 0

If the two (*) -rows are exact, then the (o) - sequence is exact for a suitable “connecting
homomorphism” §.

Proof. At first, we have to define § (To make the following more clear, it might prove
helpful to retrace the following, formal steps by hand in the diagram - a so-called
'diagram chase’):

Let m” € ker(¢") C M"

=3ImeM:pB(m)

= B'(p(m)) = ¢"(B(m ))
= p(m) € ker(f’') = Im(a’)
=Ji1n’ € N :d/(n) = p(m)

, since (3 is surj.

& (m") =0

Now define: §(m”) :=n’ =n’ + Im(y’)
We have to show that §(m'’) is independent of the choice of m:
Let m,m € M, such that 5(m) = B(m) =m”.

:>ﬁ(m—7h):m”—m”=0

=3Im' e M’ a(m’) =m—m
— plm — ) = plalm’)) = /(' (1)) and
p(m —m) = p(m) — p(m) =: o/ (n') — o' (V')
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if we set n’ := (/)" (p(m)), 7 := (a’)"L(p(m)). Thus we get:
= a/(n' = 1') = o/ (¢'(m'))
=n' —n' = ¢'(m') € Im(¢’), since o is inj.
= n’ =7/ € Coker(¢’)

Thus § is well-defined.
Next we show that ¢ is R-linear:
Let m”,m"” € ker(¢”);r,7 € R and let m,m € M and n’,7/ € N’ as in the definition
of 6.
= B(rm + 7m) = rm” + #m”, since B is linear
= a'(rn’ +71') = p(rm + 7m), since o, ¢ are linear

= §(rm” + ") = rn/ + 7/ = ré(m”) + 75(m’")

It remains to show, that the sequence is exact - we only prove this for the interesting
part ker(d) = Im(f)):
e “O": Let m"” € Im(f))
= Im € kerp: f(m) =m" and thus
(@)~ Hp(m)) = 6(m") =0
o “C”: Let m” € ker(d) and let m € M,n’ € N’ as in the definition of .
—=n =0
= n' € Im(¢')
=-3dm' e M': ¢'(m') =n
= m — a(m’) € ker(p)
since <p( ) =a/(n) = a/(¢'(m')) = (a(m))
= Bi(m — a(m')) = (m) (Boa)(m) =m"

7m” =0 by exactn.

!

— m" Im(ﬁ|)

O

Corollary 2.23 (Special 5-lemma). Suppose that in two of the maps @, ¢, "
are 1somorphisms. Then so is the third one.
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2. Modules and linear maps

Proof. Assume ¢’ ¢" are isom. We know the following sequence is exact:

ker(¢") —— ker(yp) — ker(¢") — Coker(¢') —— Coker(¢) —— Coker(¢")

= 0 ——=ker(p) ——0 is exact
= ker(p) =0
and 0 —— Coker(p) — 0 is exact
= Coker(yp) =0
Thus ¢ is an isomorphism. The remaining cases work analogously. O

Corollary 2.24 (9-lemma). Consider

0 0 0
0 M M M 0 (+)
0 N’ N N 0
0 P’ P p” 0 (%)
0 0 0

with exact columns.

If the middle row and one of (*),(**) is exact, then so is the other row.

Proof. If (*) is exact, then by 222 and exactness of columns:

0 0 0 0 P’ P P 0

is exact. Analogously, if (**) is exact, then

0 M’ M M 0 0 0 0

is exact. O]

Corollary 2.25. For a short exact sequence 0 M — s M
the following are equivalent:
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2. Modules and linear maps

(a) The sequence is split exact, i.e. 3¢ € Hom(M", M) : ¢ otp = idpn
(b) 3j € Hom(M,M'") : joi=idp
In both cases we have: M = M' @& M"

Proof.
° “(a) :> (b)77
0O—M —MoM' ——M'——-0 exact
lz ii@w lz
0 M— M —F N 0 exact

This commutes. Thus, by 22317 & v is an isomorphism and we set

jr=myo(i®y)

o “(b) = (a):
0 M’ : M L M 0 exact
TR
0O—M —MoM' ——M'——-0 exact

Analogously j @ ¢ is an isomorphism and we set:

b= (j @ @)
O
Proposition 2.26.
(a) Let
M Py 0
ltp/ \ch (p/l
o 8’ \

NIHNHNN

be a commutative diagram of R-linear maps, such that the first row is exact and
B oa =0.

Then there exists ©" : M — N" R-linear, such that ' o = ¢" o (i.e.: the
diagram commutes).
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(b) Let
M’$M$M”
%SO, i@ i@’l
0 N N

be a commutative diagram, such that the second row is exact and 8o a = 0.

Then there exists a @' : M' — N’ R-linear, such that o/ o ¢’ = poafi.c.: the
diagram commutes).

Proof.
(a) Let m” € M”. Then by exactness 3m € M : B(m) =m".
Define ¢"(m") := §'(¢(m))
Show: ¢” is well-defined
Let m,m € M, such that S(m) = S(m) =m”

Note. ¢” is obviously R-linear.

(b) Exercise.

D). Tensor Products

Definition 2.27. Let My, ..., M,,,T be R-modules. A multilinear map
p: My x...xM,—=T
is called a tensor product of My, ..., M,

i< V multilinear ¥ : M; X ... x M,, - M (where M is an R-module) 3;a €
Hompg(T, M),such that oo ¢ = 1, i.e. the following diagram commutes:

My x ... x M,

7
\\\ -

T
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2. Modules and linear maps

<= V R-modules M the map
Homp (T, M) 25 Mult(My x ... x My, M);a— aogp
is bijective.

Proposition 2.28 (Existence). If My, ..., M,, are R-modules, then there exists a tensor
product.

Proof. Let P := M x .. x M, and let F':= @, _p R be the free module of rank #P.

By abuse of notation we denote the free generators corresponding to the A-component
by A = (my,...,my).

= F'= {Z axA | only finitely many ay are non—zero}
repP

= Z Almy,emn) (M1 oy ) |

(m1,....,m,)EP

Careful! These are formal sums, so we can’t pull a(,,, ... .,y into the vector (my, ..., my)!

Now consider the submodule

No— (M, ey +ml, ey my) — (M, ey My) — (M, ey MY, ey My,
(M, .c,amy, ..,mp) — a(my, ...,my) Ymy, ...,my,mii € {l.n};a € R

The quotient module is called T := F /N

Let o : P =T : (mq,....,mp) — (Mmy,...,my). Then ¢ is multilinear by definition of T.
Let ¥ : P — M be multilinear. Then define:

o F MY axd— Y axt(N)

AeP AEP
Then o (N) = 0, since ¢ is multilinear.
= a:T — M,t— d(t)
is well-defined and R-linear and
(o @)(my,....,my) = a((my,...,my)) = Y(m,...,my)

and « is obviously unique, since any other o making the diagram commute would by
definition map the generators (ms,...,m,) of T to the same image, i.e. ¥(my,...,my).
O
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2. Modules and linear maps

Proposition 2.29 (Uniqueness). If o : My x..xM, =T and ¢’ : My X ...x M,, = T"

are two tensor products of My, ..., M,,, then there exists a unique isomorphism o : T =N

T', such that
S0/
©

M x ... x M,

T T

R1IR

commutes.
Proof. Consider the following diagram:

My x ... % Mn@HT

T J1idr

where the four unique homomorphisms are deduced by choosing either T or T" as
tensor product and replacing the M in the definition of the tensor product each time
by T and T’. Thus we get oo 8 = idy+, foa = idr and thus « is an isomorphism. [

Remark 2.30. We choose the following notation:
The tensor product of My, ..., M,, we denote by M1 ®p --- Qr M,.

The image of (mq,...,m,) we denote by m1 ® -+ @ my,, and call it a pure tensor.

Note.

e Every element in My ®p -+ ®r M, is a finite linear combination of pure tensors

e A linear map on M; ®g --- ®g M,, can be definded simply by specifying the
images of the pure tensors, as long as this behaves multilinearly

o If M =(my,...,mg),N={(ny,..,n)
e We have
(rrm)@n=r-(m®n)=m® (r-n)

and
(m+m')@n=men+m' @n.

Example 2.31.
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(a) M = R",N = R™ two finitely generated free modules
M ®r N = Mat(nxm,R)by z@y+— z-y'
Thus {e; ®e;|i =1..n,j = 1..m} is a basis for M ®r N.

(b) Z/QZ ®z Z/gz = 0, since:

(c) Let R =2,M = Z,M' = 2Z and N = Z/QZ. Then 2®1 € M ®r N and
2®T€M’®RN,but:

InM®RRN:201=2191=1®2-1=100=0®0
In MRrN:201#0®0
(d) Let M be an R-module, I < R

M®RR/12M/[.Mbym®?l—>W

Proof.

e The map M x R/[ — M/I . M (m,T) — 7 is bilinear, so there exists a
unique
@:M@RR/I%M/I.M7m®7%—>W
e ¢ is clearly surjective, since m = p(m ® 1).
e Show: ¢ is injective:

n

ker(p) o Zai(mi ®T;) = Z((aimi) ®T%)

i=1 i
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2. Modules and linear maps

Thus we get:

=><p((z a;rim;) 1) =0

%

:>Zairimi :6
— Zairimi el-M

=3dn; € M,b; GI'Zairimz Zb n;

:>(Z7“z'aimz ®1=( Zb n; ®1—Z(b n; ® 1)
*an Z(”j®6)

J

:Z@):@ﬁ
J

= Injectivity

(e) Let R’ be an R-algebra and let M be an R-module. Then:
M ®p R’ is actually an R’-module via:
r (mer)=mae (r'r
?g/,( ®r) ® (r'r)
Eg: M=Z"R=7,R =Q
= 2"®,Q=Q"
Proposition 2.32. Let M, N, P; My, A € A be R-modules. Then:
(a) M@r N =N ®r M via:
m@ne=>n®m
(b)) ( MRr N)@r P2 M®r(N®rP)=2MegrN Qg P via:
(mMRnN)@p—>mR(np)—»mMAnNp
(¢) M@ (Brea Mr) = Biea(M @ My) via:
m @ (ma)aea — (M @ mx)ren

In particular: M @z R™ = M™
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(d) Homgr(M ® N, P) 2 Hompg(M,Hompg(N, P)) via:
e (@: M — Homg(N,P) :m+— (N = P:n— o(men)))

Proof.

(a) clear, since N @ g M satisfies the universal property.
(b) Exercise
() M x @, My 2 @, (M ® M,) via:

(m, (mx)x) = (m @ mx)x

So there exists a unique a : M @ @, My, such that:

m (m,\),\ — (m®m,\),\

Show: « is surjective:

@(M ® My) = {(m@my)x|m e M,my € My,only fin. many m) non-zero)
A
= Im(«)

Show: « is injective:

Since M x Mx = M @D ,,cp My
mx A= H
0 L A#p
is bilinear, there exists a unique ay : M ® My - M ® GaueA M,,, such that:

(m,my) = m® (my)uea with m,, = {

m®@my = m® (my,)uen, with m, as above.

So there is a unique

o PMeM Mo P M,

AEA HEA
(m@ma)rea = Y ax(m@my)
AEA
Obviously: (o oa)(m ® (my)x) = ... =m® (my)a

= o/ oa =id = « is injective.
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2. Modules and linear maps

(d) Clearly v : ¢ — ¢ is an R-linear map. Our claim is now, that - is bijective:
If ¢ : M — Hompg(N, P) is R-linear, then
W' M x N — P
(m,n) = (m)(n)
is bilinear. Thus there exists a unique homomorphism

pM@N—P
m®n = y(m)(n) = p(m@n) = gm)(n) = v(p)(m)(n)

Thus ¥ = v(p) € Im() and ~ is surjective. Injectivity is obvious.

Proposition 2.33 (Exactness). Let M, M’, M" N be R-modules.

® P

(a) M’ M M 0 is exact <=

V P R-module: 0 — Homp(M", P) ——~ Homp(M, P) —*> Homp(M’, P)

18 exact.
) If M' —2> M LNy Vel 0 is exact, then:
id id
M' o NZ2X M®NMM” ® N ——=0 is exact (i.e. the tensor product

is right exact/).

(¢) If O M 0 is split exact, then:

id id
O—>M’®N(/J®—N>M®NMM”®N—>O 18 split exact.

Proof.

(a) Exercise
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(c)

2. Modules and linear maps

M’ M M" 0 is exact
(a)

= 0 —— Hompz(M" ,Hompg(N, P)) — Hompg(M,Hompg(N, P)) — ...

..— Hompg(M',Hompg(N, P))
is exact VP

@ 0 —— Hompr(M" ® N,P) —— Homp(M ® N,P) —— ...

..——Hompzr(M’' ® N, P)
is exact VP

g M @N—MIN —M"® N ——=0 is exact

Too long and tedious, skipped.

Example 2.34. (The tensor product is not left exact in general) The sequence

0 7 2

Z L, 0

is exact, but

0—=7Z®y Z/QZ — =7y Z/QZ — Z/QZ ®z Z/QZ

is not exact, since (1 ® 1) =2® 1 = 0, so 7 is not injective!

Definition 2.35. Let R be a ring, P be an R-module.

(a)

P is called flat over R

® P

;<= For all exact sequences 0 M’ M M

quence

0—>MoPZL e p @Y yrep— 0

is also exact.

<= Tor all exact sequences M’ ——~ M — Yo M the sequence

M oPf Mo p P g P
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2. Modules and linear maps

is also exact.

<= For all injective maps ¢ : M’ M the map
eRidp: M'®@P - M®P

is also injective.

(b) P is called projective

:(:}VM—W»N,w:P—)Nﬂa, such that

M—"> N
4
P
commutes.
(c) P is called finitely presented
i<= Jk,l € N, p, such that:
R¥ R —*>p 0 is exact.

Proposition 2.36. For an R-module P the following are equivalent:
(a) P is projective
(b) For all surjective maps M ——s= N the map ¢, : Hompg(P, M) — Hompg(P, N)
18 surjective.
(c) If O M N P 0 is exact, then it is split exact.
(d) There exists an R-module M, such that M @ P is free.

Proof. Exercise. O
Example 2.37.

(a) P is fintely presented <= P is finitely generated and ker(y) is finitely generated
by (¢ : Rt — P,r; v p;).

(b) P is free = P is projective. In particular R" is projective.
(¢) P free = P flat
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2. Modules and linear maps

Proof. Let P =@, R, : M’ — M injective.

M @pP—229 _ MopP
D\(M' 2R R) D\(M @R R)

EL

@
D, M’ S\ M

So (mh) € ker(p) <= p(m)) =0V A

— m) €ker(p)V\ % i my =0V A

Hence P is flat. O
(d) Let R=K|z],P = Klz, y]/<xy) and consider the map

¢: M':= K[z]“"~ K|[z] =t M . Then:

(dpRp)(T®1)=y0r =771 =001=0,s0 idp®¢: Pr M — Por M
is not injectice. Thus, P is not flat.

Proposition 2.38. P projective =—> P flat

Proof. P projective @EIN : P& N is free.
Thus, by 22337(c) and for any injective map ¢ : M’ — M:

M®PeN— Mo (P& N)

! ;

MP)o(M@N)—~(MeP)®(M®N)
= ¢ ®idp is injective = P is flat. O

Proposition 2.39. If (R,m) is local and P is finitely presented, then:

P projective <= P free
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2. Modules and linear maps

Proof. We only have to show “==": Choose a minimal set of generators for P, say
(mq, ..., my). Thus the sequence

173

0 —— ker(yp) RrR" P 0

is exact (where p(e;) = m; and ker(yp) is finitely generated). Thus, by[Z306lthe sequence

is also split exact and by 2.3T] 2.33] tensorizing with R/m yields the following split exact
sequence:

0—ker(p) @ gy —=Rr 0 B4 —Po B4y —0
which is isomorphic to

0 — ker(go)/m ker((p) - (R/m)n - P/mP —(

Since these are vector spaces, (Fq)" = ker(go)/mker(so) S P/mP and dim ()" =
dim © /mpP = 7 by Nakayama’s lemma we have that

ker(go)/m ker(¢) = 0
N

= ker(p) = mker(p) NAK ker(p) =0

Thus ¢ is an isomorphism and P = R" O
Remark 2.40. With some homological algebra, we get

0 —— Tor (P, 4y) ——ker(o) © By —= R 0 By —= P 4 ——0
is exact and:

P flt < Torf(P,B4) =0
<= P free
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3. Localisation

Motivation. How did we construct the rational numbers?
Let R=17,5 =7Z\{0}
— Q= RxS 5
with
(rys) ~(r',s') i<= rs =1's
The operations on Q are defined by

’ ’ ’
s s s T S
o *“rﬁ:%
S S SSs
’ ’
r.r _rr
S

° —
S

 ss!
Note. s,s’ € S implies ss’ € S
Definition 3.1. Let R be a ring.

(a) A subset S C R is called multiplicatively closed :<= Vs,s' € S: ss’ € S and
1 €5.

(b) If S C R is multipl. closed, then we define for (r,s), (r',s’) € R x S:
(r,s) ~(r',s') 1= FueS:u(rs —r's)=0

Note. The 'Ju...” is only really needed to ensure transitivity in the following
proof.

Our claim is now, that ~ is an equivalency relation:

Proof.
o Reflexivity: 1(rs—rs) =0 = (r,s) ~ (1, 5)
o Symmetry:
(Tv S) ~ (rlv S/)
= 3JueS:ulrs —r's)=0
= u(r's—rs’) =0
= (r',s') ~ (r,5)
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3. Localisation

o Transitivity:
(,r7 S) ~ (,r/7 S/)7 (T/7S/) ~ (T//’ 5//)
= Ju,v € S :u(rs —r's)=0,v(r's" —r'"s") =
=0 =vu(rs's” —r'ss") + (r's"s —r"s's)ou

=uvs'(rs” —1"s)

= (r,5) ~ (r",s")

We then write ,
[(h S)] = ;

and ,
S’lR::RXS/N:{ghER,seS}

Define operations on S~'R by:

’ ’ ’
.£+L_rs+rs
s s’ ss’

’ ’
r.r rr
s

[ ] =
ss’

We claim, that (S7!R,+,) is a commutative ring with 1g-15 = % =3Vse S
(without proof).

We call S™'R the localisation of R at S.

Remark 3.2. There is a natural ring extension

i:R—>SilR:rl—>§

Note.

(a) s€S = i(s) = { is a unit
(b) i(r)=0 < JueS:ur=0.
In particular: ¢ is injective <= S contains no zero-divisors.
(c) Every element of SR has the form i(s)~'i(r) = L for some r € R,s € S.

(d) Let j : R — R/, s.t. j(S) C (R')*. Then there exists a unique linear ¢ :
S~'R — R’ such that

R—' s R
\TM
S-1R
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3. Localisation

commutes.

Moreover, if j satisfies the first three criteria, then ¢ is an isomorphism.
() JLSTIR = (Jo)=J
f) ISR= (I°#S 'R+ INS=10)

Proof.
e (a)-(d) hold by definition
(e):
“C”: By [L10
Dha=te] = [=7a€J
= reil(J)=J" = T e€(J) = a=1T € (J9)°

“=7: Suppose I NS # ) Then £ € I°, which is a unit. Therefore /¢ = S~'RJ

“e=": Suppose {¢,a € [,s € S} =1°=S5'R>1. ThenJaecl,seS:2=1
and therefore Ju € S : ual = usl = INS # (4
~— O~
el €s

Example 3.3.
(a) 0# R any ring, S = {r € R|r is not a zero-divisor}
— Quot(R) :==S™'R
is the total ring of fractions or total quotient ring.

In particular: If Ris an I.D., then S = R\{0} and Quot(R) is a field (the quotient
field of R).

E.g.:
e R=7 = Quot(R)=Q
e R=K[z] = Quot(R) ={|f g€ Klz],g# 0} = K(z)
(b) Rring, f € R,S:={f"|n >0}

szﬁ:SﬂR:{%ﬂanreR}

is the localisation at f.

Eg:R=Z,f=peP = ZL,={;z|2€Z,n=20}<Q
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3. Localisation

(¢) Rring, P € Spec(R), S = R\P
—o-lp_ [T
Rp:=S R—{S|s,r€R,s¢P}

is the localisation at P.
E.g: R=7Z,P = (p),p € P. Then:
« Zp={:|z€Zpts) <Q
« ZyNZyy =7
If Risan IL.D., P = (0) = Ry = Quot(R)
(d) STIR=0<=0€ S

Proof. We show two directions:

o “e=":0€8 = 2=YVaeR,s€ 8, since0-(a-1)=0-(s-0)

o “—". %:% — FJueS:u-1-1=u-1-0=0=u=0€eS
Proposition 3.4. P € Spec(R) = Rp is a local ring with P - Rp = P® < - Rp.
Proof. We have to show: Rp\P® = R}:

“27: PN(R\P)=10 E2 pe C Rp. Thus, P° contains no units = R} C Rp\P°
“CLEeERp\P* = rs¢P = 2cRpand 2 =1= L €Rp

Example.

K:=R,R:=K[z,y],P:={(x—1,y—1),Rp = {J; | f,9 € K[z,y],9(1,1) # O}
Then g :U(1,1) — R,p— % is well-defined.
Definition 3.5. Let R be a ring, S C R multipl. closed and M, N, P be R-modules.

(a) Define
STIM = {%|mEM,SES}:MXS/N

where
o (m,s)~(m,s") <= JueS:uims —m's)=0

o 5= [(m,s)]

_|_ m’ _ ms'+m's
_ = —1==

L !
s ss

|3
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3. Localisation

! ’

m m = _ mm
o . = L
S S . S8 . .
Note. e ~ is an equivalence relation

e +, - are well defined
o (S7IM,+,-)is an S~!R-module
(b) ¢ € Homg(M, N). Define:

Homg 17(S™'M,S™'N)> S 1p: S'M — S7IN: % — p(m)
S

Note.
o If o € Homg(M, N),v € Homg(N, P), then S™1(p o p) = S~ 1¢p o S~ L.
o S7(idps)) = idg-1s
e Thus: S~ is a covariant functor.

(¢) Notation: If S = {f™|n > 0}, then

o STIM =: My
o STlp=tpf

If S = R\P, P € Spec(R), then Mp := S~ M, pp := Sty

Proposition 3.6. (S~! is an evact functor) Let S C R be multipl. closed and

M = M —L an exact, R-linear sequence. Then
S Ll‘i S—1pf ﬂ S

18 also exact.

Proof. We need to show: Im(S~1¢) = ker(S—14)
“C”: STlpo STl = S7H(¢h o p) = 0. Thus Im(S~ 1) C ker(S~19).
——
=0

427 Let 2 € ker(S~1¢) —> U = g-1y(m) = O

S

= JueS:up(m)=us-0=0
=4 (um)
= um € ker(¢)
= (by exactn.) um € Im(¢) = Im' € M’ : o(m') = um
moum

!/ !
=Tt ) g™ (s )
S us us us
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3. Localisation

O

Corollary 3.7. Let R be a ring, My, M,M’ R - modules, A\ € A,N,N' < M,p €
Homp (M, M'"). Then:

(a) ST'\Rop M = S—'M
(by T@me— T
(b) STIN + S~'N' = S~1(N + N')
(¢) STINNS™IN' = §~1(N N N')
-1
(d) s My =S5 M1y
(

(e) STH@ren Mr) =@ cp S~ M)

(f) ker(S~'p) = S~  ker(yp)
Im(S~'p) = S~ Im(yp)

Proof.
(a)

Note. S™'Rx M — S7'M, (£, m) — ™ is bilinear.
Thus 10 : ST'TR®r M — S™'M : £ @ m — ™. Our claim is, that « is an
isomorphism.

o is clearly surjective, since 2 = 1 = (1 @ m) € Im(a). It remains to show

S
that « is injective:

Let z = Zle < ®@m; € kera. Now we transform all fractions to a common

denominator, i.e. I7; € R,s € §: i =10

Si S

E -
T
— x = g — @ my;
S
i=1

W
:g g®fimi
i=1

k
1
= - rim;), x € ki
$®(;:1rm) x € kera

Thus
Zk i k
_ _ 2ai=1 Tl . S
i—a(x)—f = 3u€S.u~2nmz—0
=
=3 (ufi)m;
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3. Localisation

(b) clear
(¢) We show two inclusion:
“D)?: /
“C7: Let 2 = Z,, withn € N,n’ € N’ s,8" € S.

—= JueS:usn=usn’ e NN N’
~

eEN EN’
= L =Unc ST (NAN)
(d) We know that
0 N M M/ ——=o0

is exact. Thus, by we know that

0 SN STM —— S M ) ——0

is exact.

-1
_ Sfl(M/N) o~ S M/Sle

(e) Follows from (a) and [232]
(f) We know that

0 —— ker(yp) M —25 M Coker(¢) ——0

is exact and by

0— > S5 (ker(p)) ——= S~ 'M £ 510" —» 51 (Coker(g)) —— 0
is exact

= ker(S71yp) = S~ (ker(p)), Coker(S—1p) = S~1(Coker(y))

Example 3.8. Let R = Z, p prime, N, := (p) < Z, S = Z\{0}. Then:
e NN, ={0}, thus ST'(N, = {0}) =0, but

p prime p prime
e STIN,=QVp = NS™'N,=Q
p prime

So localisation does not commute with arbitrary intersections!
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Proposition 3.9. S C R multiplicatively closed, then:
{P € Spec(R)| PN S =0} =5 Spec(S™'R), P P* = S~'P = (P)g 1p,
1s bijective
Proof. Exercise O
Philosophy 3.10. Let (P) be a property of R - modules or of R-linear maps (e.g.
“finitely generated”, “injective”,...). We call (P) local, iff:
M(or @) has (P) <= Mp(or ¢p) has (P) VP € Spec(R)

Proposition 3.11 (“being 0” is a local property). For an R-module M the following
are equivalent:

(a) M =0
(b) Mp =0V P € Spec(R)
(¢) My =0Vmeée m— Spec(R)

Proof.

(a)”: Suppose M # 0

= 30#m e M = ann(m) < R,ann(m) C R
= dm<-R:ann(m) Cm
= um # OVu € R\m

0
— L # T in M = M # 04

O

Corollary 3.12 (Injectivity and Surjectivity are local). For an R -linear map ¢ :
M — N the following are equivalent:

(a) ¢ is injective (surjective)
(b) pp is injective (surjective) V P € Spec(R)
(c) om is injective (surjective) Vm € m — Spec(R)

Proof. By B and BIT] since ¢ inj <= ker(p) = 0 etc. O
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Proposition 3.13. Let R be an I.D., f € R

= Ry= [)Rp < Quot(R)
PeSpec(R),f¢P

In particular: R = Npespec(r) F2P-

Proof. S={f"|n>0}
"C% f ¢ P = S C R\P and thus, since R is an I.D. SR = Ry C Rp VP €
Spec(R)
D% Let x € Quot(R),
I,:={reR|rz € R} <R
Then
r € Rp (E)HaER,sgéP:x:g
<= JseR\P:sx €R
— I, ¢P

Soifre (Rp = I, ¢ PYP with f¢P
PeSpec(R),f¢P

B9 (7,); ¢ v € m — Spec(R;)
= (L) = Ry
= I,NS#
=3Jffel, = f"-zr=a€R
a

fn

—x = ERf

O

Proposition 3.14. Let S C R be multipl. closed; M, N R-modules s.t. M 1is finitely
presented. Then:

S~ (Hompg(M, N)) = Homg-1z(S™'M,S™'N)

® 57

Proof. Since M is finitely presented, there is an exact sequence

B

RF 2> R M 0.
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Setting m; = B(e;) and v; = a(e}), where the e; are the standard basis vectors in R!
and the eg are the standard basis vectors in R*, we get

M= (my,...,my) and ker(B8) =Im(a)= (v1,...,0).

We consider now the map

& : S~'Homp (M, N) —s Homg-1z(S~'M,S7'N) : £
U

1
=Sy,
u

This map is obviously well-defined and S~!R-linear. We claim, that it is also bijective.

Let us first show that @ is injective. For this we choose £ € ker(®). Then

o-s(Z) -5

implies that @ =0forall e =1,...,l. By definition there exist therefore elements

S1,...,8 € S such that s; - o(m;) = 0 for ¢ = 1,...,I. With s = s1---5 € S we
therefore get
s-(m;))=0 Vi=1,... L

Since myq, ..., m; is a generating set of M, we deduce, that the morphism s - ¢ is the
zero-morphism, and hence

$_s59_,

U S-u

But then the Kernel of @ is zero and & is injective.

We next want to show that ® is surjective. For this we choose some
w S I‘IOHls—lR(S_lj\47 S_lN).

There are n; € N and s; € S such that

" (mi) n,
1 S; s’
where s = s1---5; and nj = "=, For arbitrary a,...,a; € R we therefore get
i

l l l ’
w(z‘fm):sZaw("f):Z‘lf" (3.1)
1=1

Let now v; = (v;1,...,v;). The exactness of the free presentation of M induces

!
0= (Boa)(e]) =Bv) =Y vy -my.
j=1
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Applying s - ¢ we get

l l /
0_5.¢<2j—111’ij'mj> _ 2=V

1

This fraction being zero means that there exists a u; € S such that u; -Zé-:l Vij n; =0,
and setting u = uy - - - up, we get

l
I
U - E v - my; = 0.
Jj=1

Since the kernel of § is generated by vy, ..., vx we deduce that actually
l
u-Zaj nf; =0 Va=(a,...,a)€ker(8) = (vi,...,v).
j=1

If now 22:1 a;m; = 22:1 bim;, then (a1 — b1,...,a; — b;) € ker(8) and we get

This shows that the map

@:M—>N:Zai~mir—>u’zbi'n§

i=1 i=1

is well-defined, and it is obviously R-linear. By (B.I]) we have u-s-1 = S~1p, and we
thus get

. . 71
WS Y 5T ).
u-Ss u-Ss

=

Hence, the map @ is surjective. O]

Corollary 3.15. Let M be finitely presented. Then:
M is projective <= M 1is locally free

whereas locally free means Mp is free VP € Spec(R).

Proof.
e 7= “ Assume M is projective
= dN,st. MO N =P, ., Ris free
= Mp® Np =@, Rp
= Mp is projective and by we have that Mp is free.
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o "<=% We know that if N —2s N’ , then Np LA Np . And since (Mp free
= Mp projective) and M finitely presented, we have that:

HomRP (MP,NP) @;) HOHlRP (Mp, Np)

L

(Homp (M, N))p Ledr (Homp (M, N))p

commutes.
= (¢«)p is surjective VP € Spec(R)
= (, is surjective
—> M is projective.
O
Example 3.16. Let I = (2,1 —+/=5) < Z[/=5], then I is projective, but not free.

Proof. Exercise. U

Proposition 3.17 (Flatness is a local property). Let M be an R-module, then the
following are equivalent:

(a) M is flat as an R-module
(b) Mp is flat as Rp-module VP € Spec(R)
(¢) M is flat as Ry-module ¥m € m — Spec(R)

Proof. Exercise. 0
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4. Chain conditions

A). Noetherian and Artinian rings and modules

Definition 4.1. Let R be any ring, M an R-module

(a) M is a noetherian R-module : <= M satisfies the ACC (ascending chain condi-
tion) on submodules, i.e.:

PN every non-empty set of submodules of M has a maximal element.

(b) M is an artinian R-module : <= M satisfies the DCC (descending chain condi-
tion) on submodules, i.e.:

< Every non-empty set of submodules of M has a minimal element.

(¢) R is a noetherian (rsp. artinian) ring :<= R is noetherian (rsp. artinian) as
an R-module <= R satisfies ACC (or DCC) on ideals

(d) A composition series of M is a finite strict chain
0=M, <M, 1<...<My=M

of submodules of M that cannot be refined. We call n the length of the composi-
tion series. Note that in such a chain the quotient of two successive submodules
is simple.

(e) We define the length of M
length(M) := sup{n | M has a composition series of length n} € NU {oc}

as the maximal length of a composition series, if one exists, respectively oo
otherwise.

Proof of the equivalence denoted by ! and !!: Suppose first that there is a set X of sub-
modules of M without a maximal element, then this can be used to create an ascending
chain of submodules which does not become stationary. If conversely every set of sub-
modules of M has a maximal element and M; C M, C ... is an ascending chain of
submodules of M, then {M; | i > 1} has a maximal element, say M,,, and it follows
M; = M, for all ¢ > n. This proves the equivalence denoted by !, and that denoted
by !! follows analogously. O
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Example 4.2.
(a) Fields are noetherian and artinian as rings
(b) V a K-vector space, then:
dimg V = length(V) < oo <= V noetherian <= V artinian
since M C M' < dim(M) < dim(M")
(c) Z/nZv n > 0 as Z-module is noetherian and artinian
(d) Klz;|i € Nl := ;o K[zo, - ,xy] is neither noetherian nor aritinian, since:
(o) & (wo,21) & (T0, 71, 72) & ...

(wo) 2 (28) 2 (w0) 2 -

Proposition 4.3. Let M be an R-module. Then:
M is noetherian <= every submodule of M is finitely generated

Proof.

e "= Suppose N < M is not finitely generated, choose 0 # my € N and
recursively choose m; € N\ (mq, ..., m;—1). Then:

(mo) C (mo,m1) C ...4

o —": Let My C My C M5 C ... with M; < M. Define

M:=|]|M<Mm

s

i=1

Then by assumption M = (mq,...,m,) and thus 3j : mq,....m, € M; and
finally: My = M; = MYEk > j.

O

Example 4.4. Let R be a P.I.D., but not a field. Then R is noetherian, but not
artinian. Choose 0 # p € R, such that p is irreducible (or p € R\R*). Then

)2 P* 2% 2 ...

In particular: Z, K|z],Z[i], K [x] are all noetherian and not artinian.

Proposition 4.5. Let 0 M — v L 0 be an exact sequence

of R-linear maps. Then:
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4. Chain conditions

(a) M is noetherian <= M’ and M" are noetherian

(b) M is artinian <= M’ and M" are artinian

Proof.
(a)

e “=—": First we show that M’ is noetherian:
Suppose My C My C ..., M; < M’. Then a(My) € a(M;) C ...4, since M
is noetherian.
Now we show that M" is noetherian:
Suppose My € My € My C ..., M; < M”. Then 8~*(My) C S~ (M;) C
B71(My) C ... are submodules of M and by assumption:
3587 (My) = BN (M) Vi > j
— BB~ (M) = BB~ (M;))Vi> j
Thus M" is noetherian

o “«<==": Let M1 C My C M3 C ....M; < M. Then by assumption there
exists a k, such that Vi > k we have a=1(M;) = a=1(M}) and B(M;) =
B(My). Now we need to show that My = M; Vi > k, in particular we need
to show “D7”:

Let m € M;
— fB(m) € B(M;) = B(My)
= 3Im € My, : B(m) = B(m)
= m —m € ker(8) = Im(«) and m — m € M; since My C M;
—3Im’ € a Y (M;) = a1 (My,) : a(m/) =m —m
=m=_m —a(m') € M,
~

eMk eMk

(b) Analagous

Example 4.6.
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4. Chain conditions

Lpoo 1= {{%} E@/Z|ord([%}):p”,nZO},pEP
= {Lﬁl} EQ/Z|aE {0,...,p"—1},n20}

is artinian, but not noetherian (the so-called Priifer group). To prove this, we
claim that:

1
N S Zpe a Z- submodule <= In e N: N = <[p”}> =: N,
zZ
Proof.
o Y=V
o “=": Let [pi} € N, such that pta.
= ged(a,p™) =1
= 3JbgeZ:1="ba+qp"

— [t o[ -of2] ol e

~(her

We now have to consider two cases:

(1) In maximal, such that there exists [pi} € N with pta. Then

(2) <[p%}> C NVn > 0. Then:

o= O [Rl)£ve

n=0

Note.
NoC N1 C Ny Q- CZpo

= Zp is artinian (every descending chain is a “subchain” of this) but not
noetherian (the chain above does not become stationary).

In particular, Zye is not finitely generated (by 5.
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4. Chain conditions

(b) The sequence

a—

0 Z 1 Z ﬁﬁ[ﬁ% oo 0

p p

is exact, so by 3] L4 and the above example Z, is neither noetherian nor
artinian as a Z-module

Corollary 4.7. Let My, ..., M,, M be R-modules

(a) My, ..., M, are noetherian (rsp. artinian)
= M1 ®---® M, is noeth. (rsp. artinian)
(b) R is a noetherian (rsp. artinian) ring, M is a finitely gen. R-module

= M is noeth. (rsp. artinian)

(¢) R noetherian and M finitely generated, then M s finitely presented.

Proof.

(a) We do an induction on n:
0—— @?:_11 M; —= @ M; —= M, —=0

is exact. Since @?:_11 M; is noeth./artin. by induction and M,, is noeth./artin.
by assumption, we know by LB that @), M; is noetherian (rsp. artinian).

(b) M = (my,...,mp)p. Then:

0 ker(c) R" —%s M 0

is exact and by (a) R™ is noetherian (rsp. artinian). Thus, by 5 M is noethe-
rian (rsp. artinian).

(c) If M = (my,...,my)p then the map
a:R" — M:e;—m,

has a finitely generated kernel, say ker(«) = (k1,...,k;), since R™ is noetherian.

Thus the sequence
(07

R RS M —0
with B(e;) = k; is exact and thus a finite presentation of M.
O

Proposition 4.8. Let R be a noetherian (artinian) ring, S C R multipl. closed and
I < R. Then:
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4. Chain conditions

(a) R/I is a noetherian (artinian) ring
(b) STIR is a noetherian (artinian) ring
Proof.

(a) clear, since any ideal J < R/ 7 corresponds to an ideal J < R with I C J and
vice versa.

(b) Let JO g Jl g J2 g ,Jl ﬂ SilR.

= JiCJICJ5C .., J 4R
=3dk: J; = J Vi>k, since R is noeth.

= (i) =(Q) vizk
~—— ~——
=J by =J;
= Jy =L Vi>k

Analogously for artinian.

B). Noetherian Rings

Theorem 4.9 (Hilbert’s Basis Theorem).

R noetherian = R[z] noetherian

Proof. Notation: Let 0 # f =" | fiz" € R[], fi € R, f, # 0. Then let

frn =:1c(f) the leading coefficent

Let J < Rlz],J #0 = I := (lc(f)|0# f € J)p < R. So, since R is noetherian,
there exist fi,..., fx € J, such that

I'=(le(f1),-,1e(fi)) g
Our claim is now that
T =i, fid g + (L, 2%z N )
as R-modules, where d = max {deg(f;)|i = 1..k}
o OV

e “C”: We have to show that for all f € J there exists r € J such that f —r €
(fr,++ fu) gy and deg(r) < d. For that we do an induction on deg(f):
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4. Chain conditions

—deg(f) = d =0:f =1l(f) € I = (fi=l(fi), -, fe=1le(fr)) C
<f1,~--,fk>R[w] = r:=0

—deg(f)<d:= r:=f
— deg(f) > d: Since lc(f) € I there exist a; € R. such that

k
le(f) = Z aile(f;)

Set .
fli=f- Z a; f;zdes(f)—des(f:)

i=1

Then deg(f’) < deg(f) and by induction there exists an r € J, such that:

fr=re{fii fu) g deg(r) < deg(f') < deg(f)

k
— for=— (f-/ )+ Zaifixdeg(f)—deg(fi) € {f1, - ’fk>R[a:]

i=1
and deg(r) < deg(f).

Thus we get: Since <1, x, 2,23, ,xd*1> is a finitely generated R-module and
R is noetherian, it is also a noetherian R-module and by

<1,x,x2,x3,-~- ,md_1>RﬂJ

=(g91,",91) p by

is a noetherian R-module and thus finitely generated.

= J= <f17"' afk?gla"' 7gl>R[ac]

is finitely generated and therefore R[z] is noetherian.

Corollary 4.10.
e K fieldl = K|z, ...,x,] noetherian
e R noeth. = Rlx1, ..., z,] noetherian

Remark 4.11. Is K [z1,- -+ ,x,] noetherian? Yes! Using the Weyerstraf3-Division
Theorem one reduces the proof to K [x1, -+ ,xn_1] [xn] being noetherian!

Skipped: 4.12.
Skipped: 4.13.
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4. Chain conditions

Skipped: 4.14.

Proposition 4.15.

R noeth. = R(R) nilpotent = In>1:R(R)" =0

Proof. R noeth.

= R(R) is finitely generated. = R(R) = (a1, ,ax)p
= Ja; 10" =0V1

Now let n := max {«;,i = 1..k}, then (Zle bia;)*" = 0. O

C). Artinian rings

Definition 4.16 (will be used again from on). Let R be a ring, then
dim(R) :=sup{n e N|3Py C P, C--- C P,, P, € Spec(R)}

is the Krull dimension of R.
Example 4.17.

(a) K afield = dim(K) =0

(b) RaPID., Rnot a field = dim(R) = 1.

In particular: dim(Z) = dim(K|z]) = dim(K [z])) = dim(Z[i]) = 1
Proposition 4.18. If 0 # R is artinian, then:
dim(R) =0

(<= m— Spec(R) = Spec(R)). In particular: R(R) = J(R)

Proof. P € Spec(R) = R/P is artinian by .8 We claim, that R/P is actually a
field:

Let 0 #a e p X 3p: (@) = (@)

=a" € (a"t)
= 3p: 1-a"=a"=ba""' =ba-a"

=1 = ba since R/p is an 1.D.

Thus /p is a field. 0
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4. Chain conditions

Proposition 4.19.
R artinian = |m— Spec(R)| < oo

Proof. W.lo.g. R # 0.

:>M::{m1-...~mk\k21,mi<1~R}7é(Z)

R artin. .. . . .
23 my - ... -my € M minimal with respect to inclusion

= Vm<J-R:mDum-my -...-mg =ty - ... g (by minimality)
1 pri .
gneﬂz:mi Cm

m; ma

X.
= m =m

Proposition 4.20.

R artinian = R(R) = J(R) is nilpotent
Proof. We have:
RN(R) DR(R)? DR(R)®* D ...
So, since R is artinian, there exists an n, such that R(R)" = R(R)* = IVk > n.

Suppose I # 0
= M:={JQR|J-T#0}#10

since N(R) € M.
—> 3Jy € M minimal
—0£acyia I#0
= (a) € M, and since Jy is minimal:

:>J0:(a>
Now we get:
72
(@I IT=a-12"Z a-T40
=>a-1 € M, and since a-I C (a):
= (a)=a-1
—3bel:a=ab= (ab)b=ab® = ab®Vk > 1 by induction
—Jk:a=a-b"=a-0=04

since b € I and I C N(R).

Lemma 4.21. If there are my,--- ,m < - R, such that my - ... -m; = 0, then:
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4. Chain conditions

R is artinian <= R is noetherian

Note. The m; are not necessarily pairwise different!

Proof. We do an induction on k. For k = 1 R is a field and the statement holds
trivially. So assume the statement is true for £ — 1 and my - ... -m = 0.

Let Iy_1 =my-...-mp_1 and Iy =mqy - ... -y = 0.
= I = kal/lk is an R/mk‘ vector space
IZ%))(Ik*l/lk is a noeth. R/mk - module <= kal/lk is an artin. R/mk - module)
= (I’f—l/j—]C is a noeth. R - module <~ Ik_l/lk is an artin. R - module)

= (Ix—1 is a noeth. R - module <= I;_; is an artin. R - module)

By 1:1 - correspondence of prime (and maximal) ideals fiy, ..., 0,1 < ~R/Ik71 and
iy - ... Wx_1 = 0. Hence by induction R/Ik—l is noetherian if and only if it is artinian.

Now consider the exact sequence

0 i\ “——R B —=0
By the considerations above and follows the statement. O

Theorem 4.22 (Theorem of Hopkins).

R is artinian <= (R is noetherian and dim(R) = 0)

Proof.
o “=": By EI9m — Spec(R) = {my,--- ,m}

k
B 0=9(R)" = J(R)" = ((\m)" 2 [\ wf 2 mf - ..o
EZR is noeth., dim(R) = 0 by IS

e “<": postponed
Theorem 4.23 (Structure Thm. for artinian rings). If R is artinian, then:

k
.
=1

R

1



4. Chain conditions

with R; local and artinian.

Moreover, the decomposition is unique, i.e.: If R = EBé-:l S; with S; local, artinian,
thenl =k and AII € Sy, :
Ri = Sng)

Note that the decompositon can actually be described as

R= @ Ry.

mem—Spec(R)

Proof.
(a) (Existence:)
By ET9m — Spec(R) = {my,--- ,mz}. We claim:
W = R¥n > 1,0 #

Suppose this is not true. Then there exists m < - R, such that n" +m} C m and
since m is prime: m;,m; C m and thus m; = m=m; 4

Thus, by 4.20] there exists an n, such that

k
=Rl k@R, by 12
3 =1

ALs

i=1

and R/mn is local and artinian.
1

Note moreover, that

k
- @ R/f}), = R/uf,

j=1
since (R/w}), = 0if j #iand (R/m}), = R/u}if j =i.
(b) (Uniqueness:) Postponed to 522

Example 4.24.
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4. Chain conditions

(a) R= K[x]/<x2>7 Spec(R) = {(Z)}. This ring is artinian by Hopkins.
(b) dim(R) = 0 # R is noetherian:
Let S := K[z;|i € N, I := (x¢,2%,23,--+) and R := S/I. Claim: Spec(R) =
{<T0’T1’ o >}
If P/I is prime
— @ =0l —=mely
= dim(R) =0

But R is not noetherian, since:
(To) & (To.71) & (T0,71,72) & -
(¢) R noetherian % dim(R) < oo:
A:=Kl[z;,0#ieN],m, = W,PR = (Tympt1, Ty ) € Spec(A).

S:=AUy,P,R:=5"1A

Then R is noetherian, but dim(R) = co.

D). Modules of finite length

Theorem 4.25 (Theorem of Jordan-Hélder). If an R-module M has a composition
series, then all composition series have the same length length(M) and every strict
chain of submodules can be refined to a composition series.

Proof. We denote by
I(M) := min{n | M has a composition series of length n}

the minimal length of a composition series of M.

We claim that {(N) < I(M) holds for every strict submodule N < M. For this we
consider a composition series

0=M, <M, 1<...<My=M
of M of length [(M) = n, and we set N; := M; "N < M, for i = 0,...,n. It follows

that
;o Nifl/NZ' = (Mi,1 ﬁN)/(Ml ON) — Mifl/Mi T—T
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4. Chain conditions

is a well-defined R-linear map and since M;_1/M; is simple, either N;_; = N; or «;
is an isomorphism and N;_1/N; is simple. Omitting superflous terms the N; define
thus a composition series of N, which implies that I{(N) < n = I(M). Suppose now
that we have the equality I(N) = I(M), then no N; was superflous and each «; is
an isomorphism. We claim that then M; = N; for all i = 0,...,n, leaving us with
the contradition N = Ny = My = M. The proof of this claim works by descending
induction on i, where M,, = 0 = N,, gives the case i = n. If we now have N; = M;
and
(73N Ni—l/Ni = N7_1/M7 — M’l—l/Ml T T—=T

is an isomorphism, then obviously N;_; = M,;_1, finishing the indcution. We have
thus shown that [(N) < I(M).

Suppose now that My < My_1 < ... < My is any strict chain of submodules in M,
then due to

0 <I(Mg) < U Mg—1) <...<lUMy) <I(M)
we must have k < [(M). On the other hand, if the chain is a composition series, then

k > (M) by the definition of {(M). This shows that all composition series have the
same length, which then is length(M) by definition.

It remains to show that any strict chain
M < M1 <...< M

of submodules can be refined to a composition series. We have already seen that
k < I(M) = length(M). If the chain is not yet a composition series, we can refine it
and its length will still be bounded by I(M), so that we can do so only finitely many
times. But once it cannot be refined anymore, it is a composition series. O

Corollary 4.26. An R-module M has finite length if and only if it is artinian and
noetherian.

Proof. If M has finite length then by the Theorem of Jordan-Holder every chain of
submodules of M has at most length length(M). Thus there are no infinite descending
or ascending chains of submodules, and M is artinian and noetherian.

Suppose now conversely that M is artinian and noetherian. Then the set of strict
submodules of My := M has a maximal element M, since M is noetherian. By
maximality the quotient My/M; is simple. Moreover, M; is noetherian as well and if
it is non-zero, we can find in the same way a maximal strict submodule My of Mj.
Continuing in this way we construct a descending chain of submodules

My > M, > Ms; > ...

where every quotient M;_1/M; is simple. Since the module is artinian, the sequence
must stop eventually, say with M,,, which implies that M,, = 0. But then

0=M, <M, 1<...<My=M
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4. Chain conditions
is a composition series of M, and by the Theorem of Jordan-Holder M has finite
length. O
Corollary 4.27. For a ring R the following are equivalent:
(a) R is artinian.
(b) R is noetherian of dimension dim(R) = 0.
(¢) R has finite length as an R-module.

Proof. This follows immediately from Corollary [4.26 and the Theorem of Hopkins
4. 22 [
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5. Primary decomposition and Krull's Principle Ideal
Theorem

A). Primary decomposition

Motivation. in R = 7Z we had

Uz

z=pit .y
as prime factorisation, similarly in any U.F.D. How can we generalize this?

The problem is: In general we cannot find such a decomposition for each element. So
maybe we could rephrase the above formula to

(2) = (1) (pfr)
Our hope is, that any ideal I < R can be written as

I'=@in---NQ,

with the @; somehow “uniquely” determined and a generalized notion of powers of
prime ideals.

In a general ring this will fail. In a noetherian ring, however, this actually works! We
will find @;, such that \/Q); is a prime ideal. However, @; will only contain a prime
power and uniqueness will only work up to a certain point

Definition 5.1. Let R be aring, Q < R, I < R.
(a) Q is primary

= Q#Rand (abe Q = acQorbe/Q)

<~ QR#Rand (abe@Q = a€QorIn:b" Q)

— R/Q #0and (b€ R/Q is a zero-divisor == b is nilpotent)
If Q is primary and P = 1/Q, we call Q P-primary.

(b) A primary decomposition (PD) of I is a finite collection of primary ideals Q1, - -+ , Qn,
such that
I=Q1N--NQy

(¢) A primary decomposition is minimal : <=
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5. Primary decomposition and Krull’s Principle Ideal Theorem

(1) VQi #\/Qj i # ]
(2) ﬂi# Qj ,¢_ QiaVi =1.n
Note. v/Q; C /Q; is allowed! (see 5.10)

Example 5.2. Let R be a U.F.D. Then 0 # Q = (g) is primary <= Jp € R prime,
n > 1, such that ¢ = p™ - r,r € R*

Proof. We show two directions:

° AA<:77:
abe @ = p"|ab
=p"|aorp|b
—aecQorbe (p)=+/Q
o “=7: Let ¢ = pi' - ... - p2 be the prime factorization of ¢q. Suppose r > 1

(otherwise we’re done).

Then pi™ -p3? ... -ppreQ,buta ¢ Q,b¢ (p1-...-p) =V/Q 4.
—~ —

=a =b

In particular:
e RPID — (Q primary <= Jp prime, such that Q = (p"))

e RUF.D., g=ce-p .. p% prime factorisation.

.

= (q) = (pg")is a minimal PD.

i=1

Proposition 5.3. Let R be a ring, Q < R primary. Then /Q is the smallest prime
ideal containing Q

Proof. Suppose a,b € \/Q
= 3dn:a"b" = (ab)" € Q
—a"eQorb e /Q
=a€y/Qorbe \/62
Thus +/Q is prime. Since

va= N -

QCP prime

it is also the smallest prime ideal containing Q. O

74



5. Primary decomposition and Krull’s Principle Ideal Theorem

Lemma 5.4. Let R be a ring, S C R multipl. closed, Q,Q" < R with Q,Q" <
R;Ilv'” 7In7J<]R

(a) V/Q is a mazimal ideal = Q is v/Q-primary

(b) m<-R = m" is m-primary Vn > 1

(¢) Q is P-primary, a € R\Q = (Q : a) is P-primary

(d) Q is P-primary and
(1) SNP =0 = S~'Q is an S~' P-primary ideal in S™*R and S~'QNR = Q
(2) SNP#£0) = S71Q=S"'R

(e) Q,Q" are P-primary — QN Q' is P-primary.

) Vvhon---nlL,=vLn---nVT,

(9) (Mizy 1)+ T =iy (i 2 J)

(h) Vhi+-+ L, 2Vh +-+ VI,

Proof.
(a)
\/@/Q = () P= S)?(R/Q) < 'R/Q
Pespec(f)
= spec(fp) = {V90}
= Byislocal = (B =B p\VQ,

= every zero-divisor of R/Q is nilpotent, i.e. is in \/Q/Q
= (@ primary.
(b) Vm® =m < - R and by (a) m" is m-primary
(c) We have to show: /@ : a = P. Since “2” is clear, we only need to show “C”:

be@:a
= abeQ
:>a€Qorb€\/>, but a ¢ Q
—bec\/Q
—Q:aC\/Q=P

— Q:ag\/ﬁ:\/@:P

(0]
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Now show that @ : a is primary:
bce@:a
= (ab)c € Q

:>abEQorce\/é:\/Q:a
=beQ:aorc€\/Q:a = Q:a primary

(d) e PNS#D:
= dbe PNS
= dn:b" e QNS since P=+Q
= S~ lQ=S5"'R

e PN S = (): We have to show S™1Q N R = @ (or rather Q° = Q). Since
“ D" holds by [L.I0, we only have to show “C”:

b
ZZIGS*lQmR;aeQ,seS,beR

=—=-dte S :ta=tbs
=@ > ta = b(ts), where ts € S, thus ts ¢ P
=>b € @) since @ is primary.

Now we need to show 1/S—1Q = S~'/Q:

- e = r=NecsQ = te/5Q

S

— «cr;
ZeV/5IQ = (D) esq
? =s"(2)" €STQNR=Q
—ad"cQ = ac\/Q
:>g e S~/Q

Now we need to show that S~1Q is primary, so let %% € S71Q and assume
be /S71Q =5"1/Q. Then b ¢ \/Q.

ab=st22 € STIQNR =Q = ab € Q and since b ¢ /Q we know that
a € Q and thus £ €S1Q

(e) VOQNQ =/QN\/Q = P by (f).
abe@QN@Q andbé¢ P = acQNQ’
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(f) - (h): Exercise

Example 5.5.
(a) “P prime # P" primary”:

Let R = K[x,y,z}/<xy _ z2>,P = (z,%) € Spec(R)

Then 7y =22 € P2, but T ¢ P2 and y ¢ P = vV P2.

We see in particular that the condition (a-b € Q = a € /Q or b € /Q)
does not imply that @ is primary, since the power of a prime ideal satisfies this
condition!

(b) AAQ is P—primary B Q = pn».
Let R = K[z,y,Q = (z,4%)

= (z,9)° = (2%, 29,9%) € Q C (2,y)

— V= (4} @ Ky
= ( is primary and Q # (z,y)"

Corollary 5.6. Let R be a noetherian ring, P € Spec(R),Q < R,Q C R,m<-R

(a) If Q is P-primary then there exists an n > 1, such that

P"CQ

(b) The following are equivalent:
(1) Q is m-primary
(2) VQ =m

(8) In>1:m"CQCm
Proof.  (a) Since R/Q is noetherian, by
P/Q = \/Q/Q = gﬁ(R/Q)
is nilpotent.
= 3n> 1:Pn+Q/Q: (P/Q)" :Q/Q

— An: PP CQ
(b) e “(1) = (2)": v
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e “(2) = (3)”: By[dl Q is m-primary and thus (3) follows from (a)
e “(3) = (1)”: Since (3) implies /@ =m < - R, (1) follows from [5.4]
O

Corollary 5.7. Let R be a ring and I < R,I C R. If I has a PD, it has a minimal
PD.

Proof. Assume I = Q1 N---NQy, is a PD.

e Step 1: Delete recursively all those Q;, for which i Q; CQ;

e Step 2: Replace the @); with the same radical by their intersection.

Lemma 5.8. Let R be any ring, I < R,a € R. If I :a =1 : a?; then:

I={T:a)Nn I+ (a))

Proof. “C” is clear, we only show “2”:

re(l:a)N{ +{a))
—dbel,ceR:r=b+caandar el

2

=T3ar= ab +cd® = ca’> el
~—

eI
=—=cel:d’?=1:a = cacel = rel

O

Theorem 5.9 (Existence of PD in noetherian rings). In a noetherian ring every ideal
has a minimal PD.

Proof. Let M := {I < R|I C R, I has no PD}. Suppose M # ). Since R is noethe-
rian, there exists an Iy € M maximal with respect to inclusion. In particular Ij is not
primary, i.e. there exist a,b € R such that ab € Iy, but a ¢ Iy, b™ ¢ Iy¥n > 1.

Now consider the chain:
In:bCIy:b¥*CIy: b3 C ...

Since R is noetherian, there exists an n > 1, such that

Io:b" =1y :bF =1y : (b")*Vk >n
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and by 0.8 we have:

o= (lo:b") N (lo+ (V")
~——— —_———
DIy, since a¢ly DlIo, since b* ¢y

= (lo : V"), (Lo + (b")) ¢ M since Iy was maximal
= Let Ip: 0" =Q1N---Qk, Lo+ (") = Q) N---NQ; be the PD’s of these
=Ih=0Q:1N--NQrNQ;N---NQ;isaPD

Example 5.10.
(a) Ri= K[z,y,2], T = (z7,2) = (,5) N (=) is a PD
(b) R = Kl[z,y],I = (22, zy) is not radical.

I= (z) N{x,y)? = (&) N (2%y)
~ = ~——

prime primary primary

are two different minimal PD’s.

Thus, the PD is not unique!
Definition 5.11. Let R be aring, I < R
(a)
Ass(I) = {P e Spec(R)|Fac R:VI:a= P}
= {P € Spec(R) |Ja € R/I P = Ann(ﬁ)}

is the set of associated primes of I

(b)
Min(I) := {P € Ass(I) | Q € Ass(I) : Q € P}

is the set of minimal primes of I or isolated primes

()
Emb(7) := Ass(I)\Min(T)

is the set of embedded primes of I.

Remark 5.12. If I =Q1N---NQ, is a minimal PD of I, then:

VEkIar € (1) Q)\Qw
Jj#k
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5. Primary decomposition and Krull’s Principle Ideal Theorem

And thus:

T

Tiap={) (Q:ar) = (Qk:ax)
=1 A/—’
=R for j#k
which is \/Qk-primary.
In particular:
e Vkdar € R:1:ag is /Qr-primary
o Ifax ¢ /Qk, then I : ai, = Qx is a primary component

Theorem 5.13 (First Uniqueness Theorem). Let R be any ring, I < R, I C R with
minimal PD

I=QiN---NQ,
Then Ass(I) = {\/Q,,--- ,V/Qr}.

In particular: The number of primary components of I and their radicals do not depend
on the chosen minimal PD.

Proof.
° Lég”:
Spec(R) > \/ﬁmﬂ VQi : a, where m@@ {%7 Z Z gz
=N Vve2]] Ve
agQ; agQ;

—=3i:/QiCVI:aC Qi a=Q;
—VI:a=+/Q;

o “D”: Letke{l,---,r}.

I@Ela €R:(I:a)=Qk:a which is \/@—primary
— \/Qi =VI:ac Ass(I)

Corollary 5.14. If I = Q1 N--- N Qy minimal PD, then:
Min(I) = {P € Spec(R) | I C P and $Q € Spec(R) : [ C Q C P}

are the minimal ones among the prime ideals containing I.

In particular:
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5. Primary decomposition and Krull’s Principle Ideal Theorem
() 2 = N7
PeMin(I)

(b) R is noetherian => R has only finitely many minimal prime ideals

Proof.

e “C”: Let Min(I) > P b1 \/Q; for some j. Now assume there exists a P’ €
Spec(R)\Ass(I): [[Q: CIC P CP

—31:Q, CP
— QI CVP =P CP=Q;4
e “D:” Let P € Spec(R) be in the right hand set. By the argument above there
exists an [, such that P D +/Q; 2 Q; D I and since P is minimal we get P = /Q;
O
Corollary 5.15. If I = Q1 N---NQx minimal PD, then

k
U VQi= {ae R|E€R/I is a zero—divisor} ={a€R|I[:a2D ]I}
i=1

In particular: If I =0, then

U \/@ ={a € R|a is a zero-divisor}
i=1

Proof. We show
{a €R|ac R/I is a Zero—divisor} = U vI:a
ag¢l

e “C”: Let b in the set on the left hand side. Then there exists an a ¢ I, such
that abe I. Thus b€ I:a C I :a and b is in the set on the right hand side.

e “D”7: Let b be in the set on the r.h.s.
—3Ja¢l:beVi:a
=dm:b"€l:a
=b"ael
= choose m minimal (m > 1, since otherwise a € I)
— b(b::ig) el
¢1

and thus b is a zero-divisor in R/ T
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5. Primary decomposition and Krull’s Principle Ideal Theorem

Now we claim: (J,¢; VIia=U_, VQi
° “2”: Bym
o “C"Letad¢I=Q1N---NQr = Ilst. a¢Q

k
= m:ﬂ\/Q]ag\/Qla@\/@
j=1

Example 5.16. Let R = K[z,y], I = (z? zy)

I= (z) n (2%y)
~ N——
(z)=(z) (z2,y)=(z,y)
is a minimal PD. Thus:
o Ass(I) = {(z),(z, )}
e Min(I) = {(z)}
e Emb(I) = {(z,y)}
Proposition 5.17 (PD commutes with localisation). Let R be a ring, S C R multipl.
closed, I < R, I # R with minimal PD I =Q1N---NQ,. Then:
S = () $'QandST'INR= () Qi

are minimal PD’s.

Proof.
sENs 0= N ste
i=1 Q:NS=0

Note.
SNQi=0 < SN/Qi =0

since a € SN4V/Q; = a” € SNQ;.
Thus, by 5.4, S~'Q; is primary, if SN Q; =0

Moreover I = ﬂ:zl Q; is a minimal PD, i.e. the \/Q); are pairwise different. and so
the S=11/Q; are pairwise different (if /Q; N S = 0).
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5. Primary decomposition and Krull’s Principle Ideal Theorem

Now suppose ﬂj# S71Q; € S7'Q; with Q; NS = 0. Then:
@ C(()S'Q)NRCS'QNR=Q:4
J#i i#]

And we have:

RNST'I=Rn (] S7'Q
Q;NS=0

= [ (RnS'Q)

N————’

Q;NS=0 -0,

@ﬂQj

Q;NS=0

Definition 5.18. Let R be aring, I < R, I # R, X C Ass(I). Then:
Y is called isolated : <= (Ass(I)> PP CPe ¥ — P’ eX)

E.g.: If P € Ass(I), then
Yp:={P' €Ass(I)|P' C P}
is obviously isolated and

P e Min(I) < Sp = {P}

Corollary 5.19. Let R be a ring, I < R, I # R with minimal PD I =Q.N---

and ¥ C Ass([I) isolated. Then:
Sy == R\ U P

Pcs
18 multipl. closed and
Sg'InR= () Q
VQiES

In particular: (\Q; is independent of the chosen PD
VQiED

Proof.
SsNQi=10
—=SxNV/Qi=10
—VQi C U P

Pex
C0-pcxy. /O, cp
—/Q;,ex.
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The rest follows from [B.17] O

Corollary 5.20 (Second Uniqueness Theorem). The isolated (minimal) primary com-
ponents of a minimal PD are independent of the chosen PD

Proof 5.21 (of [22] “<="). Show: R noeth and dim R =0 = R is artinian.
dimR =0
= m — Spec(R) = Spec(R) = {P | P minimal}

@{ml, -+« my,} finite

n

= R(R) = [\m

i=1
@Elm:O:g?(R)m =m"-...-m
@R artinian

Proof 5.22 (of 423 “Uniqueness”). Let

s3

R % @::1 R;

We intend to show: R; = R/Iy where Iy,---, I, are the isolated (minimal) primary
components of (0).

Consider ¢y : R Y @;1 Ripi» Ry, , where ker(py) =: I,. Then:

= Ry = R/Ik local, artinian ring

= Jymp <-R: I Cmy and an:mzk C Iy

@ I}, is my-primary

= (0) =ker(¢)) = (] I
k=1

is a PD

By the C.R.T. (IL12) I;, I; are pairwise coprime Vi # j. Thus m; % m; Vi # j. Thus
the radicals of the I; are pairwise different.

Suppose now that some /; was redundant in the PD of 0. Then the map

a:R—>@Ri:a'—>(%(a)|i7’éj)
i#£]

84



5. Primary decomposition and Krull’s Principle Ideal Theorem

would be surjective with kernel (,; I; = (0), i.e. it would be an isomorphism. In turn

also the map o o1~! would be an isomorphism which would map the j-th unit vector
e; € @;_, R to zero. This is clearly impossible.

Thus the PD is minimal and all primary components are actually isolated, i.e. minimal
and by .20/, I1,--- , I, only depend on R and thus Ry,--- , R, only depend on R.

B). Krull's Principal Ideal Theorem

Definition 5.23. Let R be a ring, P € Spec(R),I < R,n > 1;a4,...,ar € P
(a)

P :=P".RpNR=(P")*
={acR|Ibe R\P:abe P"}

is the n-th symbolic power of P.
Note.

e P»C P C P. Thus PM) = P and VP™ = P
° (P(n))e _ (Pn)ece _ (Pn)e
(b) P is minimal over aq, ..., ax

:<= }Q € Spec(R) : ay,...,ar € Q C P

(c)
codim(P) :=ht(P) :=sup{m|3I Py C P C ... C P,, C P, P, € Spec(R)}
is the codimension or height of P.

(d)
codim(I) := ht(I) := min {codim(P) | I C P € Spec(R)}

is the codimension or height of I.

Proposition 5.24. Let R be any ring, P € Spec(R),n > 1
= P™ is P-primary

Proof. Exercise. O

Theorem 5.25 (Krull’s Principal Ideal Theorem). Let R be a noeth. ring, P €
Spec(R) minimal over a € R\R*. Then:

codim(P) <1
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5. Primary decomposition and Krull’s Principle Ideal Theorem

Proof. Suppose Q' C @Q C P are prime ideals. We need to show. Q = Q.

Localising with respect to P and dividing by Q' we may assume w.l.o.g. (by 1:1 -
correspondence of prime ideals):

e Rlocal, P=J(R)<-R
e Q=0
e RisanL.D.

The idea is to show @ = 0 by showing Q*) = Q*+1) then from this (Q - Ro)F =
(@ - RQ)k+1 and then using Nakayama’s lemma. Since Q**+1) C Q®) is obvious, we
only need to show the other inclusion:

P is minimal over a, so we get:
— dim(R/<a> )=0
@R/< a) is artinian, since it is noeth. by assumption
— QW 4 (a) = QY + (a) for some k
(just consider: Q + (a) 2 Q® + (a) D ... in R/<a>)
= Q" c Q" +(a)
Now let y = x 4 at with y € Q™) ,z € Q*+V t € R.

— at =y — 2 € Q¥ and since P is minimal: a ¢ Q = /Q®). As Q™) is primary,
we get t € Q) by 524

— QW Cc Q) + 4 QW) Cc QWD 4+ pQ®*) c QW)
epP
Thus we have QD + P. Q¥ = Q(®) and by 1Tl we get:
QW) = Q(k+1)

Thus we can derive:
(Q-Rg)* = Q*Rg = Q™ - Ry by definition, as (P™)¢ = (P™)*® = (P™)®

= QW+ “Rg = QL. Ro=(Q- RQ)k+1
=(Q Rg)"-(Q- Rq)

E9(Q ro)t =0

= (@ - Rg is nilpotent

= Q- Rg =0 since R is an I.D.

= (@ = 0 again, since R is an [.D.
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5. Primary decomposition and Krull’s Principle Ideal Theorem

O

Note. NAK can only be applied, since R is noetherian and thus every ideal is finitely
generated!

Corollary 5.26. R noetherian, Py, Py, P3 € Spec(R), Py C Py C Ps;a € P3\P,. Then

JP € Spec(R):a€ P and P, T P C Ps

Proof. codim(P3/Pl) > 2 by assumption.
By Pi’/Pl is not minimal over @ € Pi’/Pl and thus there exists a P € Spec(R),
suchthata€P/p1 andP/plgp?ypl. O

Corollary 5.27. Let R be a noeth. ring, P € Spec(R) minimal over ay, ..., a, € R\R*.
Then:
codim(P) <r

Proof. We do an induction on r. For r = 1 see[5.25 Now let r > 1:

Let Po C P, € ... € P = P. By[h.26l and induction we may assume that a, € P;.

Thus P/<ar> is minimal over ag,...,G_1 € R/<ar> and

Pl/<ar> & P2/<ar> GG Pry<ar> - P/<ar>

Ind.
Thus " — 1 < codim(P/<aT>) < r—1, and we get

r>sup{r’' | 3Py C P, C .. < P.= P, P, prime} = codim(P).

O

Corollary 5.28. Let R be a noeth. ring, a € R\R* not a zero-divisor and P € Spec(R)
manimal over a. Then
codim(P) =1

Proof. Ass(0) ={Py,...,P,} = a¢ P;VibyBEId

Now let Ass(0) D Min(0) = {Py, ..., P} 22 3 € {1..n} -

P, C P
~— =~
ag ac
= P, C P = codim(P) > 1 and by the KPIT follows equality. O

Corollary 5.29. Let R be a noeth I.D. Then R is a U.F.D. <= all prime ideals of
codimension 1 are principal
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Proof. We show two directions:

o “=": Let codim(P) =1

=30+# f=f""-...- f € P prime fact.
= Ji: f; € P since P is prime
=0&(f)CP

= P = (f;) since codim(P) =1

e “<—": First we show, that if 0 # f € R\R* = f is a product of irred.
elements:

Assume that

M = {(f) | f is not a product of irred. elements} # ()

=3 (f) € M maximal with respect to inclusion, since R is noeth.
= f is not irred.

= f=ghig.h¢ R

= (9) 2N & (M)

= (g), (h) ¢ M by choice of f

= g, h are products of irred. elements

= f is a product of irred. elements 4

Now we need to show: f irreducible = f prime:

Choose: P € Spec(R) minimal over f (this exists, since R is noetherian).

@codim(P) =1

= P is principal by assumption

—> P = (p) for some p prime element
=-da€ R: f=ap,since fe P
—>a € R, since f is irred.

= P = (f) = f prime

O

Corollary 5.30 (Compare with Example .24 ¢)). Let (R,m) be a local noeth. ring,
then:

dim(R) < dimp m/m* < oo
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Proof.
R noeth.
NAK _
= m= (a1, - ,a,) for some a; € mand r = dlmR/mm/m2
—>m is minimal over ay,--- ,a,

= dim(R) = codim(R) < r

Remark 5.31. (a) If P € Spec(R), we get
(1) codim(P) + dim(£/p) < dim(R)
(2) codim(P) = dim(Rp)

(b) We call a local noetherian ring (R,m) regular if dim(R) = dim gy m/m*.
Note, if R is the local ring of an algebraic variety at a point p, then m/m? is
the dual of the tangent space of the variety at the point p and the above equality
means that the point is a smooth or reqular point of the variety!

Corollary 5.32. Let (R,m) be a local, noetherian ring, a € R\R*.
(a) dim (R/<a>) > dim(R) — 1.

(b) If a is not a zero-divisor, then dim (R/<a)) = dim(R) — 1.

Proof. We show two inequalities:

e “>7: Choose a chain Py C P; C .. C P; of primes in R with d = dim(R), such
that @ € P; with minimal i. Note, for this we need that R is local, so that a is
contained in every maximal ideal! Otherwise possibly no chain of length dim(R)
would contain a prime ideal which contains a!

By B26 we get ¢ < 1
e Pl/(a) C...¢ P(V<a> are primes in R/<a>' Thus:
dim (R/<a>) >d—1=dim(R) - 1.

e “<”: Choose {(a) C Py C Py € ... € P, a chain of prime ideals in R of maximal
length, such that a € Fp.

— dim (R/<a>) =r = dim (R/PO) E:émdim(R) — codim(Py) 228 dim(R) — 1

Note, in order to apply Corollary [5.28 we need that a is not a zero-divisor.
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Corollary 5.33.

dim(K[zq,- - ’xn]<11*a1;'” ,znfan)) =n
In particular, K[x1,...,%n)(z,—a1, wp—ay) 5 @ Tegular ring.
Proof. B.321 + Induction. O

Geometrical interpretation 5.34.

Consider 0 C (z) C (z,y) € K[z,y] and R = K[I’y’z]/@:z,yz)’P = (z,7,2 - 1).
Then:
codim P = dim Rp
= dim(K[m7 ¥ Z]/(xz, yz>)<§@ﬂ>
= dim(% 927, ),
= dim K[2] sy = 1

T,5,2—1)

Since dimV/p = 0 = codimP + dim(¥/p) =1 < dim R = 2.

Proposition 5.35. A regular local ring (R,m) is an integral domain.

Proof. We prove the statement by induction on d = dim(R). If d = 0 then by
Nakayama’s Lemma m must be zero, since m/m? = 0.

Let thus d > 0. Since R is noetherian there are only finitely many minimal prime
ideals Min(0) = {P4, ..., P;}. By prime avoidance [[LT7] there is an

zem\ (WUPU...UP).

In the following sequence of inequalities we make use of the following identifications
R/(z)/m/(z) = R/(z) and m/(z) /m? + (z)/(z) = m/m* + (z) in order to determine that
R/(z) is regular:

dim g (m/w* + (z)) = dimp/m (m/w*) — 1 = dim(R) — 1

B2 i (Ryw)) P2 i (e + ()

Thus the inequalities are indeed equalities and R/(x) is regular.

By induction R/{(x) is then an integral domain and thus (z) is a prime ideal. It
follows that some of the minimal prime ideals P; is contained in (x), and since z is not
contained in any minimal prime the inclusion is strict.

We now want to show that this P; is indeed the zero ideal and therefore R is an integral
domain. To this end we consider an arbitrary element y € P; C (x). There must be a
z € R such that y = z- z. Since P; is prime and x ¢ P; it follows that z € P;, and thus

y=x-z€x-P,Cm- P,
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We have thus shown that
Pi Cum- Pi7
which by Nakayama’s Lemma implies that P; = 0. This finishes the proof.
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6. Integral Ring Extensions

A). Basics

Motivation. Let K C K’ be a field extension, o € K’ and
Yo : K[z] — Kla], 2 —— «
Then we call o transcendental over K

1 <= @, is an isomorphism

< ker(pq) =0

— dimg Kla] = 00

<= K]Jalis not finitely generated as K - vector space

We call «a algebraic over K

1 <=, 1s not injective
<0 # ker(pa) = (pta) < K[z]
<= 30 # pg € Klz] : pto(a) =0

L e monic : po(a) =0

<— dimg (K[a]) < oo
<= K|a] is a finitely generated K - vector space

Note. The step marked by (*) does not work in general rings!

Definition 6.1. Let R C R’ be a ring extension, o € R',I < R,
Yo : Rlz] —> R[a] C R,z +——>«

(a) a is called transcendental g or algebraically independent g : <= @4 is an iso-
morphism <= ker(p,) =0

(b) ais called integral

n—1
= 0# f=2"+ Z fix® € R[x] monic, such that f(a) =0
i=0

(c) R'is integral/p : <= Every a € R’ is integral
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(d) R'is finite, : <= R’ is finitely generated as an R-module,

n
= Jon, .0, €ER R =) iR
i=1

(e) R’ is a finitely generated R-algebra
i Jai,..,an € R : R = Rlay, ..., ay)

Example 6.2. Let R be a UFD, R’ := Quot(R) and o = § € R';a,b € R,b # 0.
Then we have that 0 # bz — a € Rx] and since « is a zero of this polynomial, it is not
transcendental. However, since we’re not in a field, this does not imply automatically,
that « is integral. It may well be that it is neither of these. In fact, we can show:

a is integral /p <= a € R

Proof. The implication “<=" is clear, we only have to show “=— "":

W.lo.g. we can assume, that ged(a,b) € R*. Since « is integral g there exists a
polynomial 0 # f = 2™ + Z;L:_Ol fiz* € R[x], such that f(a) = 0. Thus we have:

n n—1 i
a a a
=1(5) -5+ 2 i
n—1 ) )
at = — § fiazbn—z
=0

n—1
b (_ Z fiaib"_i_1>
=0

€ER

o
|

Thus we know that b | a™ and by the assumption above follows b € R* and thus
ac R O

We summarize:
e The elements of R'\R are neither transcendental nor integral

o If a ¢ R, then R[a] is not finitely generated as R-module (see [63]). So

a transcendental < R[a] is not finitely generated, p

e Eg. a€Qintegral)p <= a€Z

Proposition 6.3. Let R C R’ be a ring extension, o € R’ Then the following are
equivalent:
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e « is integral/r
e R[a] is finite
o There exists an R|a]-module M, such that Rla] € M and M is finite,r

Proof. We show three implications:

. ‘<‘(a) = O f =+ S firt € Rla] with f(a) = 0. Thus Rla] =
a" Lol

“(b) (c)”: Set M = RJa]
(c) (a)”: Apply (Cayley-Hamilton) to ¢ : M — M, m — am, I = R.

) —t
° “

= 3x,, € R[z] monic, such that x,(¢) =0

= 0=xe(@)( 1 )=xe(@) 1=xp(a)

€EMDR[a]

Corollary 6.4 (Tower Law). Let R C R’ C R be ring extensions. Then:
(a) If R’ is finite)p = R’ is integral;p
b) If R’ is finite;p, R" finite;pr = R’ is finite,p
/ / /

(c) ai,...,an € R integral)p = Rlaq, -+, ay] is finite/p
d) R integral;p, R" integral/p, = R integral/p

/ / /
e) Intr/(R) := {a € R’ |« integral/g}, the integral closure of R in R’ is a subring

/
of R/

Proof.
(a) Let « € R = R C R|a] € R'. Applying to M := R’ yields that « is
integral /g

(b) R'= (a1, an)p, B := (B Bl g

— R = (o B;li=1.m,j=1l.n)p,

(¢) We do an induction on n. For n = 1 we just have to apply [6.3] Now assume the
statement is true for n — 1. We get:

R - R[al,"' aanfl]gR[ala"' ;an]

~—
finite by induction

where the last inclusion is also finite by 6.3} since v, is integral/z (and thus also
integral /gjq, ,.. 1)- With (b) we conclude that Rlai, -, a,] is finite, .

H0n—1
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(d) Let « € R

= Tby, - ,bp1 ER 1"+ by 10" 1+ ... +by =0

= « is integral /rpp,.... b, 1]

= R C Rl[by, - - - ,bn—_1] is finite by (c), since R’ is integral /z and
Rlbg, -+ ,bp—1] € R[bg, - ,bn_1, ] finite by

= R C Rlbo,--- ,by_1,0q] is finite,z by (b) and by (a) integral g,

in particular, « is integral
(e) Let o, 8 € Intr/(R). Then by (c) R[a, 3] is finite,g, in particular integral .
Thus o+ f,a- 8, —a,1 € Intr/(R)
O
Example 6.5.
(a) R'integral/p # R’ finite,p. E.g. Let R’ := Intc(Q),R:=Q

(b) R := K[x,y]/<x2 — ) R := K|z]. Consider R~ R’ z+ Z. Thus

is finite, hence integral.
(c) Klxy,...,x,] is integral over K[z1,...,x,], see Exercises.
Definition 6.6. Let R C R’ be a ring extension
(a) R is integrally closed in R’ : <= Intr/(R) = R
(b) R is reduced : <= R(R) =0

(¢) R is normal : <= R is reduced and integrally closed in Quot(R)
Note. Some authors require R to be an ID as well

(d) If R is reduced, then R“—— Intquet(r)(R) is called the normalisation of R.

Example 6.7.

(a) R UFD @ R is normal, e.g. Z and K[z] are normal.
(b) K[a:]/<m2> is not reduced, since 0 # T € N(R)

() R = K[lﬁy}/@g _ y3> is mot normal (but reduced!), since R is not integrally
closed in Quot(R).
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Proof. Let a := £ € Quot(R)

z
Y

72 J—
__z —_ Y —_ &
= a is a zero of z* —J € R[z], hence integral p

But suppose a € R

< 8l
Il
Q

(d) Intp (Intr/(R)) = Intp: (R), i.e. Intr/(R) is integrally closed in R’

Proof. Since “O” is clear, we only have to show “C”:

We know:
R g IntR/ (R) g IntR/ (IntR/ (R))
~— ~—

integral integral

Hence, by [64] R C Intg (Intg (R)) is integral and thus

Int g (Intp (R)) € Intp (R)

O

Proposition 6.8 (Integral dependence is preserved under localisation and quotients).

Let R C R’ be a ring extension, S C R multipl. closed and I < R'. Then:

(a) R integral/r = R//I is integml/R/mR

(b) R integral)r = S™'R’ is integral;s-1p

(c) S~'(Intp/(R)) = Intg-1x (S 'R)

(d) If f € K[z], then K[z]/{f) is integral over K[z]/{f).

Proof.

(a) INR <R and R, TAR< R//[ is an inclusion. The rest is clear (just factorize

all polynomial coefficients modulo I N R).
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6. Integral Ring Extensions

Let £ € S~IR. Since a € R', there exist b; € R, such that
a4+ by_1a" 4. +by=0

and thus also " "
A\n n—1 a\pn—1 0

— — (= ..+—=0
(5) + s (s) et sn

which shows that ¢ is integral /g-1p.
“C” follows from (b) and “2” is an exercise.

By (a) it suffices to show that (f)z, N K[z] = (f)k(a. This follows from the
Exercises.

O

Proposition 6.9 (Normality is a local property). For an integral domain R the fol-
lowing are equivalent:

(a)
(b)
(c)

R is normal
Rp is normal ¥ P € Spec(R)

Ry is normal Ym € m — Spec(R)

Proof.
Note. @ := Quot(R) = Quot(Rp) and by Exercise 26 Rp is a reduced ID!

“la) = (b)™:

Intg(Rp) = Intg,. (Rp) = (Intg(R))p = Rp
Hence Rp is normal.
“(b) = (c)” is clear

“(c) = (a)”: Consider the map i : R — Intg(R),r — 7. It induces maps
im: Rm — (IntQ(R))m : % — % and

(IntQ (R))m = IntQm (Rm)
= Intq (Rm)
— Ruy

Thus, 4y is surjective and since by B.I2 surjectivity is a local property, also 7 is
surjective. Hence R is normal

O
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6. Integral Ring Extensions
B). Going-Up Theorem

Proposition 6.10. Let R’ be integral/r, o € R. Then:
(a) o € R* <= a € (R)*
(b) If R is an ID then: R is a field <= R’ is a field
(c) m<-R <= meée Spec(R') andmNR <R

Proof.

(a) “="7 is clear, we only have to show “<=": So let 8 € R, such that 8-« = 1.
Since 3 is integral /p, there exist a; € R such that 3" + Z?;OI a;8' =0
n—1
= p=pF"0a""=) (-a)pa" €R

1=0
ER =a" *€R

Thus 8 € R and o € R*

(b) “«=” follows from (a), it remains to show “=-": Let 0 # a € R’. Then there
exists 0 # f = a™ + Z:l:_ol fiz® € R[x] such that f(a) = 0 and f has minimal
degree. Since R is an ID we can w.l.o.g. assume that fy # 0 (otherwise just
“cancel out” z).

n—1
= fo=—a" — Zfio/
i=1

n—1
= a(—a"t - Z fia'™h)
i=1
Since R is a field fo # 0 is a unit and thus

l=a-ft-(.)
—_——

ER’

(c) Byle.8 (a) R/m AR R//m is integral for all m € m— Spec(R’) and by (b) follows

/!
R/mﬂ R is a field < R/m is a field
which is equivalent to saying:

MNR<-R <<= ma-R
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6. Integral Ring Extensions

Example 6.11.

Let R’ = K[:v,y]/<x . y>,R = K[z] = R by © — Z. Let P := (T) € Spec(R’). We see
that PN R = (x) < - R, but (Z) is not maximal in R’. Thus, R C R’ is not integrall

Remark 6.12. Recall the 1:1 - correspondences:
(a) {P € Spec(R)|I C P} =% Spec(fVq) by P — P
(b) {P € Spec(R) | PN S =0} =25 Spec(S~1R) by P s S—1P
Our aim is to find a similar correspondence for integral ring extensions.

Corollary 6.13. Let R’ be integral/r, Q,Q" € Spec(R'),Q € Q'

= QNRCQ'NR

Proof. Suppose that P:= QN R = Q"N R € Spec(R). Then by 68 R} is integral 5.,
where Qp C Q% € Spec(Rp) and Pp < - Rp, which can be written as:
Pp = (Q/ ﬂR)p = Q;; N Rp and
Pp=(QNR)p=QpNRp

ByEINQp, Q% < - R and since one is contained in the other we know that Qp = Q'p.
Thus, by B.I2(b) we derive that Q = Q' 4. O

Example 6.14.

(a) Choose R and R’ as in[6.11l Let Q := (Z) C (Z,7) =: @', which are both prime.
However QN R = (z) = Q' N R.

(b) Even if Q@ € @', it might be possible that QN R = Q' N R: Let R := K[z] C
K[x,y]/<g:2 _ y2> =: R’ by z — T. Choose

P :=(x—1) € Spec(R)
Q:= (T —1,7—1) € Spec(R')
Q' :=(T—1,y+1) € Spec(R)
Then QNR=(zx—1)=Q'NR,but Q€ Q' € Q.
Theorem 6.15 (Lying-Over and Going-Up). Let R’ be integral/p

(a) (Lying-Over)
VP € Spec(R)3Q € Spec(R') : QN R=P
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6. Integral Ring Extensions

(b) (Going-Up) V P, P’ € Spec(R), Q € Spec(R'), such that
QODQNR=PCPF

there exists a Q' € Spec(R') , such that Q C Q',Q' "R =P’

Q S 3Q

/
ONR=P—5>P —Q'NR

Proof.

(a) Idea: Localise at P and choose a maximal ideal m <1 - R)>. Then show that mN R’
is the desired ideal.

By E8(b) we know that Rp C R, is an integral extension, where Pp < - Rp is
the unique maximal ideal. Now choose any maximal ideal m < - R. By [610)(c)
we get

—mNRp <-Rp
—mNRp=PFPp

Now set Q :=mN R’ € Spec(R’)

= P=PpNR
=mNRp)NR
=mNR
=mNR)NR=QNR

(b) Idea: Reduce modulo @ and apply (a):
By6.8(a) R/p - R//Q is integral and P//P € Spec (R/P>. By (a) there exists a

Q' € Spec (R//Q), such that Q' N R/p = P//p and by B.I2|(b) this corresponds
to a Q' € Spec(R') with Q C Q" and @' "R = P'.

O
Example 6.16 (Geometrical interpretation).

(a) If the component () maps to the component P, then every point P’ € P has a
preimage Q' in Q.
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6. Integral Ring Extensions

(b) Let R := K[z], R’ := Quot(R) = K(z) and K = K. Then Spec(R’) = {(0)} and
Spec(R) = {(0)} U{{x —a) |a € K7}.

Now let P := (0) C (z —1) =: P/, where P C @Q = (0), but there is no prime
ideal ’lying over’ P’. In particular, this extension can not be integral.

(c) Let R:= K|z] C K[x,y]/<1 ) = R’ by z +— Z. Now choose
e Q:=(0) € Spec(R’)
e P:=QNR=(0) € Spec(R)
e P':=(z) € Spec(R)

Then P C P’, but there is no prime ideal Q' O @, such that Q' N R = P’, since
otherwise, as T € Q', also 7y = 1 € Q' and thus Q" = R’ { ¢ prime
Note. 7 is not integral p and thus R’ is not integral

Corollary 6.17.
R’ integral)g = dim R = dim R’
Proof.

“<” : Let Py € ... € P,, be a chain in R, P; prime. By [6.17 there exists a chain
Qo € ... € Qn in R/, Q; prime.

“>7 : Let Qo € ... € @ be a chain in R, Q; prime. By [6.13] we have that Qo N R C
... € Qm N R is a chain of prime ideals in R.

O

C). Going-Down Theorem

Motivation 6.18.

(a) We want to find a reverse statement to 'Going-Up’, i.e. if we have P C P’ €
Spec(R) and P’ = Q' N R with @’ € Spec(R'), is there a Q' 2 @ € Spec(R’),
such that @ "R = P?

(b) The problem is, that R’ integral over R is not sufficient! E.g. choose
i R:=Kl,y,2] (22 — 2 — 22) — Klt,z] = R’

with
Tt -t gt -1, 22

101



6. Integral Ring Extensions

Then R =2 Im(i) = K[t3 —t,t> — 1,2] = K[t3 — t,t2, 2] and by choosing f :=
X? —1? € R[X] we get f(t) = 0 and thus ¢ is integral . Therefore, as R’ is
finite, r, hence integral. Now choose

Q =({t—1,2+1).

Then
QNR={(t"—t,t>—1,2+1) =P
(x,yaer 1)
< z +1) x—zy>
=({t-2*(t—2)(t* - 1))
={t—2z)NR=P
Now assume that there exists a @ € Spec(R), such that Q"R =P and Q C @Q’.
Then

t—D)t+Dt—2)=(t-—2)t-1)€Q
Thust—1€Qort—z€ort+1€Q. Also:

(t—2)t+2)=t2—-22€Q
and thus t — z € Q or t + z € (). We now have to consider three cases:
e 1Ist Case: t — 2 € Q C Q. Then:
2=(t—2)—(t-1)+(2+1) €Q"4
e 2nd Case: t+ z,t — 1 € ). Then
z+1=(t+2)—(t—1) € Q and thus Q = Q" 4

e 3rd Case: t+2,t+1€ Q C Q. Then
2=>t+1)—(t—-1)€Q"4
Hence there is no @ € Spec(R) as described a above
Note. (z—t)NR= P, but (z —t) C Q'
The crucial reason for our failure is that R is not normal!

Theorem 6.19 (Going-Down). Let R C R’ be ID’s, R normal (i.e. Intque(r)(R) =
R) and R’ integral/p. Then, given P,P" € Spec(R), Q" € Spec(R'), such that P C P’
and P' = Q' NR:
JQ € Spec(R): Q< Q and QN R=P
3Q Fom

}

ONR=P—5>P —Q'NR
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Proof. postponed to O
Definition 6.20. Let R C R’ be a ring extension, I < R.
(a) € R'is integral
n—1

= Af=a"+ ) fial, fj € Tand f(a) =0
j=0

(b) Intg/(I) :={a € R'|a is integral 1} is the integral closure of I in R'.

Proposition 6.21. Let R C R’ be a ring extension, I I R. Then:
IntR/(I) = \/I . IntR/(R) N IDtR/(R)

Proof.

“C”: Let o € Intg/(I). Then there exist fo, ..., fn—1 € I, such that
n—1
o = —Z fi o €I Intr/(R)
=0 7 €lntgp(R)
Thus a € /I - Intp/ (R).

“37: Let B € /T Intp (R).

=3n: " €l -Intr(R)
= da; € I,b; € IntRI(R) A" = Zaibi
i=1
Set M := RIby, ..., by], which is a finite R-module and consider
w: M — M,mw— "m,
which is R-linear. Obviously ¢(M) C I - M and by there exists
n—1 )
Xo =2" + Z cja?
i=0
with ¢; € I¥77 C I and x,(p) = 0. Thus

0 =Xe(@)(1) = xp(8")

Thus ™ is integral ;; and therefore 3 is integral ,; (just replace x by 2™ in the
polynomial).
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O

Proposition 6.22. Let R be a normal ID, K = Quot(R), K C K’ a field extension,
I 9R and o € Intg/(I). Then « is algebraic over K and the minimal polynomial of

a over K is of the form
n—1

fo = 2" + Zaixi € K|z
i=0

with a; € VI

Proof. Since « is integral r, there exists 0 # f = 2™ + Z;n:_ol fix? with f; € I and
f(a) =0. Now let

n n—1
H(CU—O%) = flo :x"—i-Zaixi € K[x]
i=1 i=0

be the minimal polynomial of a over K, with o; € K, the algebraic closure of K.
W.lo.g. a1 = a. Since f(a) =0, we know that f € <Ua>K[z]~

= dpeKlz]: f=p-pa

=0 = pa(;) play) = flay) Vi=1.n

= «; integral g

= {ag, ..., an—1} C Inty=(I), since a; € Z[oy, -+, a,] Vi

U g, o € IntK(I)\/I Intx(R) = VI- R = VI, since R is normal.

O
Lemma 6.23. Let ¢ : R — R’ be a ringhomomorphism, P € Spec(R). Then:

JQ € Spec(R'): Q° =P < (P°)*=1P

Proof.

° L4:>77:P:QC:>PSC:QC€C@QC:P

o “—=": §:=p(R\P)C R is multipl. closed. First we show that P°N.S = {):
Assume Ja € P°NS. Then

@71(04) g Pec = p

and
0# ¢ (a)Ne ' (S) S R\P

Thus we know that S™1P¢ C S~1R’. Therefore there exists a maximal ideal
m<-S™IR’, such that S™1P¢ C m.
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6. Integral Ring Extensions

Now let @ :=mN R’ € Spec(R') and QNS = 0.

= Q°N(R\P)=10
—PCP°CQ°CP
Q=P

Proof 6.24 (of 6.19). Consider the extensions R C R’ C Ry,,, where
PCP =Q'NRCQ CQpy

By and the 1:1 - correspondence of prime ideals under localisation, it suffices to
show that
P-R,NR=P
Proof.
“:)77: m
“C”: Let Oyéa— 2€P Ry NRwithae Rbe PR, se R\Q".

— becP-R - \/P R = \/P~IntR/(R)E:ZDIntR/(P)
C Intg/(P) where K' = Quot(R’)

If we set K := Quot(R) and apply [6.22] we get that

n—1
ub:x”—l-ZaixiEK[x],aiG\/p:P

i=0
is the minimal polynomial of b, .

Now consider the isomorphism
¢v: K[z] = Kz],z — ax
Then
1
fi= o(up) =™ + Z x € K|z] is irreducible
Since f(s) = a—nﬂb(b) = 0, we know that f = u, is the minimal polynomial of s

over K. Furthermore, since s € Intp/(R) C Intg/(R) and by applying [6.22] we
get that

bi = GR

an—t
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Thus )
a" ' b, =a; €P € Spec(R)
N~

€ER cR

Now assume a ¢ P. Then b, € P for all i = 0,...,n — 1.

|
—

n

= s" = f(s) — b, sseP-RCP -R CQ
A i—0 VGP
=0

=5 € Q’,since Q' € Spec(R') 4

Thus a € P.

Example 6.25. Is also codim(Q) = codim(Q N R)?
Let R = Klz,y] — K097 =
Spec(R’). Then

e codim(Q) =dimRg =1

e codim(Q N R) = codim({z — 1,y)) = 2 > codim(Q)

w—z),zy) = R and Q = <z—1,x—1,y> €

Proposition 6.26.
(a) R’ integral g, Q € Spec(R') = codim(Q) < codim(RN Q)
(b) R’ integral/p, R normal and R, R" IDs, Q € Spec(R)

= codim(Q) = codim(RN Q)

(b) B9
O

Philosophy 6.27. Applying “going-up” preserves dimension and applying “going-
down” preserves codimension.
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7. Hilbert’s Nullstellensatz, Noether Normalisation,
Krull Dimension

A). Hilbert’s Nullstellensatz

Theorem 7.1 (Algebraic HNS). Let K C K’ be a field extension such that
K' = Klag, ...,a,]

is a finitely generated K-algebra. Then K' is finite/k, in particular it is algebraicy .

Proof. (due to Zariski) We do an induction on n:
e (n =1): Suppose «a; is not algebraic,x. Then a; is transcendental /x. Then
K(z] = Klou] = K' by 2 a1 4

which is a contradiction, since K’ is a field. Thus «; is algebraic, g, hence K[o]

is finite, - by G3)/6.41

e (n—1—n):
Note. K’ finite;x <= a1, ..., a, algebraic,

Suppose that w.l.o.g. ai is not algebraic/x. Then R := Kloy] = Klz] is
integrally closed in L. Now consider

K CR=Klo] CQuot(R) = K(a1) =: L C K' = R[ag, ...,a] = Llaa, ..., o]

(the last equality holds, since L C K'). By induction we get that as, ..., «,, are
algebraic,r,. Thus

n;—1

F e, = 2™ + Z dij e Liz]; pa,(05) =0; a;5,b;5 € R = Kla]

l

Now set

n n;—1

:H H bijER — Mo ERf[-T]
i=2 j=0

Therefore ay, ..., ay, are integral g, and by A K" = Rlag, ..., an] = Rf[ag, ..., ay)
is integral /g,. Since L C K’ L is also integral g,. Hence:

K(2) 2 Quot(R) = L = Tnt, (Ry) "= Tnty, (Ry) = (Inty,(R)); = Ry 4
——

=R
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Corollary 7.2. Let K be an algebraically closed field. Then:

ai

m<-Klzy,..,r,] <= Ja=| ! | e K" :m=(x1—ay, - ,Tn — ap)
Proof.

o “<=": Consider the map ¢, : K[z] - K;z; — a;, which is surjective, where
ker(pg) = (1 — a1, ,Tp — ap):

Since “D” is clear, we only have to show “C”: By applying the Horner Schema,
every polynomial in K[z] can be written as

F=Y gilwi—ai)+r
=1

So obviously f € ker(p,) < r = f(a) =0.
Thus & [E]/m > K, which is a field, hence m is maximal.

o “=": Let m < - KJz]. Then K’ = K[Q]/m is a field and a finitely generated

K - algebra via i : K — K[@/m,a — @, generated by 771, ...,T,. Then by [l
K" is algebraic,x and since K is algebraically closed we have that K = K'. In
particular ¢ is surjective.

= Jay,..,a, € K 1@ =i(a;) =T;

Thus Z; —a; = 0, i.e. 2; —a; € m. Thus {x1 — a1, -+, T, —a,) C m and since
both are maximal, we know that (z; — a1, -+ ,z, —a,) =m

O
Corollary 7.3. If I < K[z] =: R,I C K|z], then:

Vi (\m

Icma- Kz

Proof. Since “C” is clear by [LT5 we only have to show “27:

Let f ¢I

=15 & By
=dn-Rp: Iy Cuzf
=ICIfNRCiNR=mFf
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We need to show that m < - R: Consider the canonical inclusions:

1
Kle =
Ko By Brg = {x’f n=:K
where K’ is a finitely generated K - algebra. By [Tl R% is finite, g, hence integral /i
by Thus R% is also integral/R/m. By 6I0(b) R/m is a field, thus m < - R. O

Notation 7.4. For I < K[z] we set
V(I):={a€ K"|f(a) =0V fel}

the vanishing set of I.

For V C K™ we set
I(V):={f € Klz]| f(a) =0Va eV}

the vanishing ideal of V.
Corollary 7.5 (Geometric HNS). If K = K and I < K|[z], then

V(1) =VI
Proof.
“27 Let ferI
=dn: ffel
=VaeV(I): f"(a) =(f(a)"=0"=0
= fel(V({))
“C” Let f ¢ VI

QquJ([@ng:fgém
QEQEK”:IﬂZ(M—al,“'7$n—an>¥f

ngEI:g(g):O
=ac V()

Now suppose that f(a) = 0. Then f € I({a}) 2 m. Thus, since m is maximal
and f ¢ m we have that K[z] = (m, f) C I({a}) 4, which is a contradiction to

1(a) # 0.
Thus f(a) # 0 and f ¢ I(V(I)).
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Geometrical interpretation 7.6. When K is algebraically closed, we have:
o T2 = m— Spec(K[z]) <5 K
J =
{prime ideals} &L {irred. subvarieties of K"}
{radical ideals} LN {subvarieties of K"}
Corollary 7.7. Let K be a field and let f € K[z1,...,z,])\ K. Then:
(a) dim(K|[z1,...,z,]) =n.
(b) dim(K[xy,...,z,]/{f)) =n—1.

Proof. By Proposition we know that for any g € KJz1,...,z,] the ring extension

Klai,... 2] /{g) = Klz1,...,24]/(9)
is integral. We thus get

) 0.1 7]

dim (KT[z]/(g) dim (K [z]/(g))

Déf' sup {codim(m/<g>) | < 'F[ﬁ]’g € m}

sup {codim((ml —ay, .. —an)/(g) |ae K", g(a) = O} .

However, by Corollary [£.32] and [5.33] we know for m = (z1 — a1,...,z, — an)

codim (m/(g)) IE::[ldim (Klzlm/{g)) = { Z)— 1, ii i (J)C’,

since f is neither a unit, nor a zero-divisor in the localised ring K [2]m- O

B). Noether Normalisation

Definition 7.8.
(a) Let R C R’ be a ring extension; ay,...,a, € R',n >0

(1) ai,..., o are algebraically independent, p

(<= q: Rlr1,..., 20| —> Rlas, -, @] ,x; > a; is an isomorphism

< ker(p,) = {0}
<~ A0# feRz]: flag,...,an) =0
«Vi=1,...,n : «; is transcendental ,g(q; ... a; 1]

110



7. Hilbert’s Nullstellensatz, Noether Normalisation, Krull Dimension

(2) trdegg(R’) := sup{d|Jai,...,aq € R’ alg. indep.,p} is the transcendence
degree of R’ over R.

(b) Let K be a field, R a K-algebra. A finite, injective K-algebra-homomorphism
o: Kly1,...,ya) = R

is called a Noether Normalisation (NN) of R.
Note.
¢: R — R finite <= R’ is a finitely gen. ¢(R)-module

If ¢ is injective, then p(R) = R and this is equivalent to saying that R’ is a
finitely generated R-module

Theorem 7.9 (NN). Let |K| = oo and R a finitely generated K -algebra. Then:
AB1,..., B4 € R algebr. indep. k, such that

finite!

K[pi,...,B4) = R

is a NN. More precisely:
If R = K|ay, ..., ], then

IM=| ———— € Mat(n x n, K), A = ,
0 A n—d 0 1
—~ =~
d n—d

such that B := Ma satisfies that
(a) Bi,...,Ba € R are algebraically independent;r, and
(b) B integral g (s,.... g,_,) for all i > d.
In particular, K[B1,. .., Bn] = R and dim(R) = d.
Note. The main statement follows from the 'More precisely’-part, since:
e f1,..., B4 algebr. indep.,x = the inclusion K[f1, ..., B4] — R is injective
e f=Ma = R=KI[p,..., 3] (since an, = Bn,n-1 = Bn_1— an_1nbn, etc...)

e f3; integral kg, .. 3,_,) yields finiteness of the inclusion: R = K[Bi,...,8,] =

K[B1, .., Bn-1][Br]- Since 3, is algebraic kg, ,....3,_,], It is finite over K[B1, ..., Bn-1]
by 6.4l(c); induction and [6.4(b) yields that R is finite, ks, .. .-
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Proof. Postponed to [Z.14] O
Remark 7.10.
(a) We will see later, that trdegy (R) = dim R, the Krull dimension of R.

(b) B = Ma implies that 3; is a linear combination of the o;. The main statement
also holds for |K| < oo, but then we cannot choose the 8; as linear combinations
of the ;.

(c) If we identify M with a vector in K™, where m = %;H'd_l) 18 the number of

x-elements, there exists a Zariski-open subset U C K™, such that any M € U is a
suitable coordinate change for[7.9, i.e. the non-suitable ones satisfy a polynomial
relationship (3 f1, ..., fm € K[z1, ..., 2m] such that p € U < f;i(p) # 0 for some

(d) If K is algebraically closed and R is an integral domain we can choose B, ..., B4
in such a way that the field extension K(fB1,...,B4) C Quot(R) is separable.

Example 7.11.

(a) Kly+1] C K|z, y]/<ry> is not finite, since 7 is not integral ;7). Suppose that

k—1

k i

"+ a; T €(x

; i (zy)
T EK[y+1]
k—1

k i : - .

=" + Zbﬂ? ag € (xy) with b; = const.term of a;

i=1 v

EK[y+1]
:>G,0,bi =0V
— ke (zy) 4

(b) K[z +y] C K[m,y]/<xy> is finite, thus a NN.

p=2"—(T+y)
—p() = p(y) =0
=T,y integral 7, hence finite

(¢) (Geometric interpretation) Let V =V (I) C K™, I < K[z]. Then
3 a linear subspace H = <Mf, ...,M§> CK"

of dimension d, such that the projection of V' to H has finite fibers. The idea is,

that the inclusion K[y, ..., ya] <= K [2]/1. corresponds inversely to the projection
Ki=H +— V().
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Ap-1
Recall that for M = (I A) we have M~! = (In 4B ) and if we set

0 B 0 B!
~ —_ _1 ~
M = < g?l ), then H = ker(M?).

(d) While NN corresponds to projection, normalisation corresponds to parametrisa-
tion: Let I = <y2 —xz,yx? — 22, 2% — yz> d K|z, y, 2], then consider

Ri=Klty2 0 o K)o 83y s th 2 £

Then R = K[t3,t*,t5] and the map t — (¢3,t4,#5) is a parametrisation of the
curve V(I).

Lemma 7.12. Let |[K| =00 and 0 # f € K[z1,...,x,]. Then:
daq,...,an € K\{0} : f(a) #0

Note. If K = Z/QZ (i.e. finite), f = (2 — 1)z € K|z] vanishes everywhere.
Moreover, if f is homogenous, then we may assume that a,, = 1.

Proof. We do an induction on n

en =1 |[{a€e K| f(a) =0} < deg(f) < oo. Since |K| = oo,3Ja € K\{0} :
fla) #0

en—1—n f= Z?;ofixil with f; € K[z1,...,2,-1] and fr # 0. Then by
induction there exist ay,...,a,—1 € K\{0}, such that fy(a1,...,an—1) # 0.
= 0# f(a1, .., an-1,Ty) € K[z,]
2=l 3a, € K\{0}: f(a1,...,an) #0

Moreover, if f is homogenous of degree k, then

0# fl@)=ahf(CH . 2 = 1)

Gnp

O

Lemma 7.13. Let 0 # f = fo+ ... + fx € Klz], fi homogenous of degree i and
ai,...,an—1 € K, such that fr(ay,...an—1,1) = 1. Now consider the map

Ty =N
o Klz| — Klz] : x; —
Ya 2] 2] {xiJraixn i <n
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1 0 0 a \'

i.e. the coordinate change by M = o : . Then:
: Qp—1
0 ... 0 1
k—1
¢g(f) = :C]:L + Zci:r:m ¢ € K[Ila (X3} In—l]
i=0

1S MONIC 1N Ty, .

Proof.
Let

k
Ya(fi) = Z bzt -z kTl o = (g, )

x| =0
k

= fr = Z bo (21 — a12,) oo (X1 — Q1 Tpy) -xlnal_k
|a|=0

= b(0,....0) = fr(ar, ..., an_1,1) =1

k
:}¢£(fk) = "L'ﬁ —+ Z bax?l e xii*ll . xﬁ_‘al

laf=1 km!
k—1 )
= o (f) = Valfi) + . + Val(fo) = 2 + > cizhy, ¢; € K[y, o, 1]
~—— P

deg<k

Proof 7.14 ( of [C).
We do the proof by induction on n, where R = K|ay, ..., ay).

Ifn=1weset M = (1) and 81 = ;. If oy is trancendental over K we are done with
d = 1. Otherwise, there is a monic polynomial 0 # p € K|x4] such that p(a;) = 0, so

that indeed «; is integral over K. Thus we are done with d = 0.

Let now n > 1. If a,...,, are algebraically independent, we are done with M =
I xn and d = n. Otherwise there exists an f = fo+...+ fr € K21, ..., 2] with f # 0,

fi homogenous of degree ¢ , such that
flag,...,a,) =0.
Applying to fy yields:
Jaq,...,ap—1 € K\{0}: £ := fr(a,...,ap-1,1) #0
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Dividing fx by &, we may assume that fx(ay,...,ax—1,1) = 1.

Applying yields that p = v,(f) = zF + Zf;é c;rd € K|z satisfies

(Bl s BL) = (e, ey ain) = 0

where
—ay
6/ = In—l E (6%
o —Qp—1
0 1

Thus B, = a,, is integral over K[3], ..., 5,_1]-

Applying induction to K81, ..., 3], _] there exists an M" € Mat(n —1xn—1,K) as
in [.9 such that

&3} B
. — M//
ﬂn—l ;z—l
satisfies 31, ..., B4 algebraically indep.,x and f3; is integral over K[f, ..., 3;i—1] Vi > d.
M"” 0
Set M := ( 0 1) - M’ € Mat(n x n, K), which is of suitable form and then
/
M0 B B
Ma = ( 0 1) N :
ﬁ;; Bn = /B;L = Qp

Note. M is a product of matrices where just one column is not the unit vector and
these entries satisfy a polynomial relation of the form f(a) # 0. Thus the entries of a
non-suitable matrix form a Zariski-closed subset!

O

Proof of Remark[7.10] d. We want to show that we may choose f1,..., 54 such that
Quot(R) is separable over K(f1,...,84), if K is algebraically closed.

Since in characteristic zero every field extension is separable we may assume that
char(K) =p > 0.

In the proof of Theorem we can assume that the polynomial f is irreducible
since otherwise we can replace it by some irreducible factor vanishing at (aq, ..., ).
Suppose now that f is separable in some variable, w.l.o.g. in z,, then Quot(R) =
K(B1,...,Bn) is separable over K(B1,...,8,-1) and continuing inductively as above
we find that Quot(R) is separable over K (81, ..., 84) as a tower of separable extensions.
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It thus remains to show that f cannot be inseparable in all variables. For this we recall

that f is inseparable in z; if and only if f € K|z1,...,2¥,... x,]. Thus f is inseparable
in all variables if and only if there is some polynomial g = >~ ¢y -2” € K[z1,..., 2]
such that

f=g(al,... aP).
We now choose a p-th root /e, € K in the algebraically closed field K for each
coefficient ¢, of g and set

h:Z{/a~g7€K[x1,...,a:nL
¥

then

hP :g(xf,...wﬁ) = f,
since in characteristic p we have (a + b)? = a? + b”. However, this contradicts the
irreducibility of f. O
Lemma 7.15. Let R be an ID and let K[y] < R be integral. Suppose moreover that

Q,Q € Spec(R) s.t. Q & Q and there is no Q' € Spec(R) s.t. Q S Q" € Q. Then
Q° € Q° and there is no P € Spec(Ky|) s.t. Q° € P C Q°.

Proof. Since R is integral over K[y] we deduce from Corollary 6.13 that Q¢ C Q°,
which proves the first part.

Suppose now there is a prime ideal P in K[y] strictly between Q¢ and Q°. By Propo-
sition we know that the extension

Klyl/Q° = R/Q (7.1)

is integral again. Applying Noether Normalisation [C.9 to the K-algebra K[y]/Q¢ we
get a finite extension

Klz] = K[y]/Q", (7.2)
and Corollary implies the strict inclusion of prime ideals
0=Q/Q NK[z] € P/Q°NK[2] € Q°/Q° N Kl2]. (7.3)

Combining the integral extensions in and (72) we get an integral extension
K[z] = R/Q

and the last prime ideal in (Z3)) coincides with the contraction Q/Q N K [z] under this
extension. Applying Going-Down we therefore find a prime ideal Q'/Q in R/Q
with

Q/Q<Q/Q
and Q'/Q N K[z] = P/Q° N K[z] # 0, which then implies
QcQ ¢Q,
in contradiction to our assumption. L]
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Definition 7.16. A ring R is called catenarian : <= between any two given prime
ideals Q C @ all maximal chains of primes ideals have the same finite length.

Theorem 7.17 (strong form of E3T]).
P € Spec(K|z]) = K[Q]/P is catenarian with dim(K|z]/P) = n — codim(P)
In particular, all maximal chains of prime ideals in K|[x]/P have the same length.

Proof. Tt suffices to prove the “in particular” part and the dimesion statement, and
for this we consider two cases:

e (P =0): We do an induction on n (where z = (21, ..., 2y))
-n=0 Vv

— n—1— n: Since dim(K[z]) = n by Corollary [[7] each maximal chain of
prime ideals in R is finite.

Solet 0 =Py € ... € P, < -KJz] be any maximal chain of prime ide-
als. Choose any 0 # f € P, irreducible. Since the chain is maximal, we
necessarily must have P; = (f).

= 0= ey

is a maximal chain of prime ideals in Klz] (f) Applying [(220 and [[ 9 yields
a NN .
nite
R = K[yh "'7yn71] = K[E]/<f>

By we get, that
ROP1/<f> C...¢ Rﬁpm/<f>
is a maximal chain in R. By induction we derive

m=dim(R)+1=n

e (P#0): Let 0= Py C ... € P, be a maximal chain of prime ideals in K[g]/P

— 3Py C ... € Py, such that P, = Pi/p
= 3Jdchain0=LyC..CLy=P=FC..C P,

which is a chain in R and where k = codim(P). By applying the first case we
derive m = n — k.

O
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Corollary 7.18. If R is a noetherian ring where all mazximal chains of prime ideals
have the same length and let f € R\ R* a non-zero divisor, then

dim(R/(f)) = dim(R) — 1.

In particular, if P € Spec(K|[z]) and f € K[z]\ K* with f & P then
dim (K[z]/(f, P)) = dim(K[z]/P) — 1 = n — codim(P) — 1.

Proof. Consider any chain of prime ideals P; C ... C P in R where P; is minimal
over f. By Corollary the codimension of P is one and thus there is a prime ideal
Py strictly contained in P;. By the one-to-one correspondence of prime ideals we see
that dim(R/(f)) < dim(R) — 1. If the left hand side is infinite the statement holds.
Otherwise we may assume that the sequence P; C ... C P, cannot be prolonged, i.e.
dim(R/(f)) = k — 1. Since codim(P;) = 1 also the sequence Py C P, C ... C P

cannot be prolonged, and by the assumption on R this implies that dim(R) = k as
claimed. The in particular part follows from Theorem [T.17] O

Corollary 7.19.
e Spec(K|[z1,...,zy]) = U:‘L:oXi} where
X, :={P € Spec(K|z]) | codim(P) = i}

o X,, =m— Spec(K][z]) #E=K
o Xy ={{(f)|f is irreducible}
o Xo={(0)}

In particular:

Spec(Cle,y]) = {(z — a,y — B} O {(f) | irveducible} U {(0)}
Note. In general codim(P) =2 % 3f,g: P = (f,9)

{{z1 — a1, .,z —an)}

Remark 7.20.
(a) If K C L C M are field extensions and M is algebraic over L, then

trdegy (L) = trdegy (M).
(b) If I A K[x1, ..., 2], then trdegy (K[z1, ..., 2,)/1) < n.

(c) trdegp (K|x1,...,x,]) = trdegy (K(x1,...,x,)) =n
(d) Let R be a finitely generated K -algebra which is an integral domain. Then:

trdegy (R) = trdegy (Quot(R)).
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Proof. Exercise O

Corollary 7.21. If R is a finitely generated K -algebra, then

dim(R) = trdegx (R).

Proof. By Theorem [7.9] we have f1,...,84 in R which are algebraically independent
over K where d = dim(R), so that

trdegy (R) > dim(R).

It remains to show that dim(R) > trdegy (R).

For that we may assume that R = K[z]/I for some ideal I. By Remark we know
that
m = trdegg (R) < n < oo.

We will do the proof in two steps:
1) Reduce to the case where I is a prime ideal.
2) Prove the claim when I is prime.

Let Min(I) = {Pi,..., P} be the minimal associated prime ideals of I, then v/ = PiN
...N Py is a minimal primary decomposition of the radical of I. Choose a1, ..., a,, €
K[z] such that their residue classes in R are algebraically independent over K.

Suppose that for each i = 1,...,k the residue classes of the a; in Klz]/P; are alge-
braically dependent over K. Then there exist non-zero polynomials f; € K[z1,. .., 2m]
such that

fi(al,...,am) EP,*
and 0# f = f1-- fr € K[z1,. .., 2] satisfies

flai,...,am)€P - P CPN...0 P, =VI.
But then there is an integer [ > 1 such that
fl(al,...,am) el,

in contradiction to the fact that the a; are algebraically independent over K modulo
I. Thus there is some 7 such that

trdegg (R) = m < trdegy (K[z]/P;)

and
dim(K[z]/P;) < dim(R).

It thus suffices to show trdeg, (K[z]/P;) < dim(K|z]/P;). In other words, we may
assume that [ is a prime ideal.
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In that case R is an integral domain and by Theorem [[9 we get a finite Noether
normalisation

K[ylv"'7yd] gK[ﬁly"'aﬂd] QR,

where d = dim(R). This induces an inclusion of the quotient fields

K(y1’ A 7yd) g K(ﬂl? AR 7/8d) g QuOt(R)7

and we claim that this inclusion is algebraic. Now, if £ € Quot(R) then it suffices to
show that a and ; are algebraic over K(f1,...,5q) by Corollary (e). Since a and

b are elements of R, a and b are integral over K[f81,...,84]. Then a is also algebraic
over K(f1,...,84), and b satisfies a relation of the form

Z Cj . b] =0

j=0

with ¢; € K[B1,...,B4]. Multiplying this equation by bim we get
m 1 J
D cmej () =0,
=0 b

which shows that % is also algebraic over K(f1,..., B4).

Since Quot(R) is algebraic over K(f1,...,4) we have

trdeg (R) L2 trdeg  (Quot(R)) [L208 trdegy (K(B1, ..., Ba)) =
trdeg (K(yl, e yd)) ' d = dim(R).

O

Corollary 7.22. In particular, if P € Spec(K|z]) is a prime ideal and R = K[z]/P,
then
dim(R) = trdeg (Quot(R)).

Proof. This follows right away from Corollary [[.2T] and Remark b.. O
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A). Valuation Rings

Definition 8.1.

(a) Let (G,+) be an abelian group, < a total ordering on G. We call (G,+,<) a
totally ordered group

= (9<gd heG = g+h<g +h)
(b) Let K be a field, (G, +, <) a totally ordered group. A wvaluation of K in G is a
group homomorphism v : (K*,-) = (G, +), such that
v(a+b) > min{v(a),v(b)} Va,b € K* with a+b#0

Notation:
R,:={a€e K"|v(a) >0}U{0} < K

is a subring of K and called the valuation ring (VR) of K with respect to v.
Note.

e We have to prove, that R, is indeed a subring;:
-v(l)=v(l-1)=v(l)+v(l) = v(1)=0 = 1€R,
—v()=v(-1)+v(-1)=2v(-1) = v(-1)=0
—v(=a)=v((-1)-a) =v(-1)+v(a) =v(e) >0 = —a €R,

e In G, no element g # e can have finite order, since otherwise

or

e K = Quot(R,)

Proof.

“”.
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“C”: Let a € K\R,

1
= y() =—v(a)>0
a N
<0
Thus 1 € R, = a =1 € Quot(R,)

e g K* zaeRyor%ERV

If (G,+,<) = (Z,+,<) and v is surjective, then we call v a discrete valuation
and R, the discrete valuation ring (DVR) of v.

(¢) An ID R is called a valuation ring (VR) : <= V0 # a € Quot(R) : a € R or
1eR

A VR R is called discrete (DVR) : <= R is noetherian, but not a field.

Example 8.2.

(a) (R,+,<) is a totally ordered group with respect to the usual ordering and so is
every subgroup
(b) Every field is a VR

(¢) RID, K = Quot(R), (G,+, <) a tot. ordered group and v : R\{0} — G a map,
such that v(ab) = v(a) + v(b) and v(a + b) > min{v(a),v(b)} if a,b,a + b # 0.
Then a

V:K*—)G:g»—mj(a)—v(b)

is a valuation of K.

Proof.

!
% = % = ab =d'b
= v(a) +v(') =v(a") + v(b)

Hence v is welldefined. Moreover,
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a a ab' +a'b
V(- + )= V(T)

= v(ab’ + a’b) — v(bb)
> min{v(ab’),v(a'b)} — v(bY)
=min{v(a) + v(t') — v(b) — v(b'),v(a") + v(b) — v(b) — v(b')}

a a’

= min{u($),m(5)}

(d) R UFD, K = Quot(R),p € R prime. Let
v:R\{0} > Z:a— n,,wherea=0>b-p" ptd
Then

v(a-a’) =v(bp™,b'p™e)
— U(bblpnana/)
=ng + ng = v(a) +v(a’)

v(a+a’) =v(bp™ + b pte)

=v((b+bp™e" )p"a’ ) (wlog ng > ngr)
> ny = min{v(a),v(a’)}

Hence, by applying (c) we know that

a
V:K*—>Z,E>—>na—nb

is a discrete valuation on K and
a a
Ry =1y Ina=m} ={y|ptb} =Ry
is its DVR. Examples for this are:
(1) R=17,K = Q,p prime number = R, = Zy,
(2) R=k[z],K = k(z),p € R irreducible. Then R, = k[z],) is a DVR.

pla :>a:(%)’1€Ry

Note. 1 ¢ K — |
@ pfa = ;€R,

Proposition 8.3.

An ID R is a VR <= R = R, for some valuation v

Proof.
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o “=": R, C K = Quot(R,). Let 0 # a € K. Then, as we noticed in the
definition: a € R, or % € R,. Hence R is a VR.

o “=": Let K := Quot(R). Then

G=K/p
is an abelian group. Define
a>bi—= % R

This is well-defined: If @
a = ga,b’ = hb Thus

o and b = I/ there exist g,h € R*, such that

! /

a :>%6R<:>—6R

b/

a_ g
b h
—~
€R*

Since R is a VR we know that either % € R or g € R, hence “>” is a total
ordering and @-¢ > b-¢ for @ > b,¢ € G. Hence (G,-,>) is a totally ordered
group.
We define

v:K*-G:a—a

Then v is obviously a group homomorphism. Moreover:

EZE:>EER

b
a a-+b
1 - =
== +b b eER
= v(a+b)=a+b>b=min{v(a),v(b)}

Hence v is a valuation!
= R,={a€ K*|v(a) >eqg=1=v(1)} U{0}
={a€ K*|a>1}uU{0}
:{aGK*|a:%€R}U{O}
=R

Proposition 8.4 (First property of VR’s). Let R be a VR. Then:
(a) R is local with mp = {a € Quot(R)\{0} |1 ¢ RYU{0} <-R
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(b) If R C R’ < Quot(R), then

e Risa VR
o mp & Mmp
e ' = R,
In particular: dim(R) > dim(R’)

(¢c) R is normal, i.e. Intquet(r)(R) = R

(d) {I|I < R} is totally ordered with respect to inclusion, i.e.

I,JIdR= ICJorJClI

(e) I =(ai,...ar)p <R = Fi:I=(a;)p. In particular, if R is a DVR, then R

is a PID and dim R = 1.

Proof.

(a)

Since obviously mr = R\R*, we only have to show that mr < R. So let a,b €
mg,r € R:

Suppose that ra ¢ mp = ra € R* = 1 :ri eRj.

a

Now suppose that a + b ¢ mrg = a,b # 0. W.l.o.g we can assume that
since Risa VR. Then a+b= (1+ 2)a € mp

R C R’ C Quot(R) =: K Then K = Quot(R’). By definition R’ is a VR (if
a € K with 2 ¢ R’ then 1 ¢ R and thus a € R C R'). Hence, by (a), R’ is local
and obviously

€R,

1 1
mR/z{aEK|E¢R’}Q{a€K\E¢R}:mR
Since R C R’ there exists an a € R'\R and since R is a VR we must have % € R.

Hence % € mr and % ¢ mp/, so we have a strict inclusion.

Since R\mps C R'\mp, = (R')* we know that R"” := Ry, C R’ is a VR by (a)
and mpr = Mg

“oyr.

“C”: Let a =% € mps where b,c € R,b € mp/,c ¢ mp. Then ¢ € (R')* and hence
a € mg

Thus we must have R” = R’, because otherwise, as we proved above, we would
have mp/ g Mg é
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(c) Suppose that a € Quot(R)\R and f = x"—&—zzl:_ol a;x" € R[z] such that f(a) = 0.
Then by dividing by a™~!

n—1
1 n—i—1
a——z ai () ERY
1=0 cR ~~
€R
(d) Exerc. 49

(e) By (d) there exists an 4, such that (a;) C (a;) Vj = 1.r. Thus I = (a;)p.
Furthermore, every DVR is noetherian, so every ideal is finitely generated, hence
principal. So R is a PID and since it is not a field, by [£.17] it has dimension 1.

O

Corollary 8.5.

An ID R is a DVR <= R = R, for some discrete valuation v

Proof.
e “—": Since R is a DVR, by B4lit is a PID and local. Hence

@(d) R,

mgr = <t>R = R= R<t>n

for some discrete valuation v.

o “—=": Let 0 21 < R. Choose 0 # f € I with v(f) minimal. We show that
I=(f):
“:_)77: /
“C”: Let0#£gel

:w(%)zo

=>% €ER,

=g= G f<hn
<~
ER

Thus R is a PID, hence noetherian and since by B3] it already is a VR, it
is a DVR.

O
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Corollary 8.6. Let R be a VR, k a field, such that
kE C R C Quot(R) =: K, trdeg;,(K) < 0o

Then:
dim R < trdeg;, (K) — trdegk(R/mR)

Proof. Skipped O
Example 8.7.
(a) Let f € k[z] be irreducible. Then
k Ck[z]sy =t R C Quot(R) = k(z) =: K
R is a DVR by B2(d),
— dim(R) =1

o trdeg, (K) n := 'number of variables’
o B ="y = (8 ) 5) = Qo)

Hence

trdegk(R/mR) - trdegk(QUOt(k@] <f>))

:trdegk(k@] <f>)
72 .. kel

= dlm(k[f] <f>)
lz:z‘n -1

Thus dim(R) = 1 = trdeg, (K) — trdeg, (R/mR)

(b) Let K {{t}} = {> "y ant* |R > a,, S 00,a, € K} the field of puiseuz series
over K, where

ord : K {{t}}\{0} = R: f — min{a, | a, # 0}

is a valuation. Then:
Rora = {f € K {{t}} |ord(f) > 0} is the VR
dim(Rorq) = 1, but Ropq is not noetherian, hence it is not a DVR.

If ay, ..., o, are algebraicaly independent /g, then ¢, ..., %" are algebraically
independent over K = {a-t°|a € K}

Hence trdegy (K {{t}}) = oo (cf. Exerc. 50)
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(c) Let ai,...,a, € R be algebraically indep.,g. Then for v, : K(z1,...,2,) —
K {{t}},z; — t“ we get a valuation
v:ordog, : K(z) - R

on K(z) and

e dimR, =1

o trdeg(K(2) = n

o By 2K

e Hence for n > 2dim R =1 < n = trdegy (K(z)) — trdegK(R/mR)

Theorem 8.8. Let R be an ID, I < R,I C R. Then:

JRC R CQuot(R): R isa VR and I - R’ C mp/

Proof. Consider
M :={R < Quot(R)|RC R and I -R' # R’}

Then M # (), since R € M and M is partially ordered with respect to inclusion. Now
let R be any totally ordered subset of M and R’ = (Jpicr R” < Quot(R). Then
R C R C Quot(R) and I - R’ # R’, since: Suppose 1 € [ - R':

n
=—=1= Zaibi,ai S R/,bi el
i=1
—3IR"eR:ai,....,an € R’
=—=1cl-R'";
Hence R' € M and it is an upper bound for the chain above. Hence we can apply

Zorn’s lemma and there exists an R’ € M maximal with respect to inclusion. It
remains to show that R’ is a VR:
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Suppose x € Quot(R’) = Quot(R), such that z ¢ R’ and L ¢ R’/

1
— R CR[2],R CR H
X

= R'[z], R’ {1] ¢ M, since R’ is maximal
x

=1 Rl =Ra},I- R m - m

1
= 3Ja;,b; €l R : 1—2@133 —Zb :m, m minimal
=0 7=0

= (wlogn>m) 1—by=(1—by) Zax—z (1 —bg)a;z’ and
1=0

(1 =bp)anz™ = apx Zb Zb an®
j=1
n—1
:>1:(17b0)+b0 (171)0@11’4* aanE j+ bo é
; —— jzl \\/"
el-R cl-R EI R’
which is a contradiction, since n was minimal. O
Corollary 8.9. If R is an ID, then:
IntQuot(R) (R) = ﬂ R/

RCR/'CQuot(R),R’ VR
is the normalisation of R.

Proof.

“C7: Let @ € Intquot(r) (R) =  integral, g, hence integral g/ for all R' < Quot(R)
VR with R C R'. By B4l(c) we must have x € R'.
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“D”: Suppose x & Intquot(r)(R)
=z ¢ R !
x it
x
(since otherwise = a,— + ap—1—— + ... +ag, hence
" "

2 =a,+ap 12+ ...+ apx™ 4)

— ¢y

:>3m<1~R[1}:1em
X X
1 / l _ / ! /
@afzu C R VR C Quot(R L])—Quot(R),\m’/ R 4R
51

— ¢ (R

=z ¢ R, hence z ¢ ﬂR'

O

Proposition 8.10. Let (R,m) be a local, noetherian ID of dimension dim(R) = 1.
Then the following are equivalent:

(a) Ris a DVR
(b) R is a PID
(c) m is principal
(d) dimR/m(m/mz) =1, i.e. (R,m) is regular.
() 0 AR = In>0:I=m"
(f) Ite R:VOAILR:In>0:1=(t")
(9) R is normal
k
(h) dimR/m(m/mk+1) =1 for all k > 0.

Note that condition (h) actually implies that dim(R) = 1.

Proof.
e “(a) = (b)”: BAle)
o “b) = (¢): v
* “(c) (d)”
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“S’?: /
“>7”: Assume that dimR/m(m/mz) = 0 Then m = m?, hence by NAK m = 0 4 gim r=1
e “d) = (¢):
° “(c) — (e)”: Let 0AT <R
P prime,ICP
@ I is m-primary
BI5,. ¢y = cTCw = (1)
n—1
— 1 =dimp /m(m ) = dimp /m(f/mn)

—JT=m""1tor I =m"

e “(e) = (f)”: dim(R) =1 and NAK
= 3t € m\n?
Ll gy (t) =m"
t¢:m>2n =1
= (t) =m

=t = ()" = (t*)

e “(f) = (a)”: Since R is a PID and m = (¢)
BZa)

= R= Ry = ' R,with respect to some valuation v

@RisaDVR

o “(a) = (g)": EAb)
e “(g) = (c)”: Let 0 # a € mand set I = {(a).
With the same argument as in “(¢c) = (e)” we get
I CT Q!

—=3Jbecu" 1\ {a)

We want to show: m = (t) p, where t = § € Quot(R).
Note. bm C m™ C {(a), hence %m = gm CR
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Now suppose that % -m C m and consider the R-linear map

1
¢:m%m,xr—>g~x

@XM%) =0

1
== n integral /r

Rl e R

:>b:%-a€<a>Ré

Hence % -m = R and thus

~ | =

e “(h) = (d)”: This is clear with k = 1.

e “(f) = (h)": By (f) we know that the quotient m*/m**! is generated by the
residue class of t* and thus the dimension is at most 1. If the dimension was zero,
then by Nakayama’s Lemma we would have m* = 0 and R would be artinian in
contradiction to dim(R) = 1.

It only remains to show that condition (h) implies that the dimension of R is one. If
dimpg /m(m/mz) =1, then by Nakayama’s Lemma m is generated by one element and by

Krull’s Principle Ideal Theorem dim(R) = codim(m) < 1. Moreover, if the dimension
was zero, R would be artinian and some power of m* would be zero, in contradiction
to the assumption (h). O

Example 8.11. K [z],R{z}, C{z}, K[z].,y are DVR’s.

B). Dedekind Domains

Definition 8.12. A ring R is a Dedekind domain (DD) : <=
e RisanID
e R is noetherian
e dim(R) =1
e 0#Q < R,Q C R primary

= dn>1,Pem—Spec(R): Q =P"
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(The idea is to use DDs as generalisation of UFDs for ideals)
Proposition 8.13. Let R be a noeth. ID with dim(R) =1,0# I < R,I C R. Then:

31 Q1,...,Qr isprimary:I:le.nQr,\/@# \/@VZ#]

In particular: FEvery nonzero ideal in a DD factorises uniquely as a product of prime
powers.

Proof. Exerc. 33 U
Definition 8.14. Let R be a DD, I,J < R, P € Spec(R)
(a) np(I) :=sup{n > 0|1 C P"} is the order of P as prime factor of I.
(b) I divides J :<= 1|J:<= 3QLR:J=1-Q
Proposition 8.15. Let R be a DD, 0# I1,J < R. Then:
(a) I = HP<]-RP7LP(I) = HPeAss(I) Pret) and np(I) =0 <= P ¢ Ass(I)
) IJ<—= JCI <= np(I)<np(J)VP<I-R
(¢) I+J =Tlpg pPrrne)
o ged(1,J) =1+ J =[] p,. g Prinine(nel)}
o lem(I,J) :=1NJ =[]pg. zpPrextnrDmnel)}
Hence I-J=(I+J)-(INJ)

Proof.

(a) Since R is a DD, by we know that [ = [[pepgery P™" with mp > 1. Now
suppose that @ < R and I C Q. Then [[P™? C @ and since @ is prime
there exists a P € Ass(I) : P C Q. As both ideals are maximal, we have
P =Q € Ass(I). Hence:

np(I) #0 <= P € Ass(I)

It remains to show that (P € Ass(I) = mp =np(l)):
“<7 [ C PP = np(I) > mp
“>7: (Pp)mr =1Ip C (Pp)"*") = mp > np(I)

by eel|J=3Q:J=1-Q= J=I1-QCI

¢ JCI = [[py g P =J CI=]]p, z ¥ Localising at a fixed
P yields
np(J) = np(l)
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e np(l) <np(J)VP<-R = J=1-[[P**D—"r) Hence I'|J.
(c) o I-J=][]pg pgPre@inel)is clear

o [+J=]]p.. pPrininr@me()},

LICT+J L np(D),np()>np +.J)

= np(I+J) <min{np(I),np(J)} <np(I),np(J)

—J4J (Qb) H pmin{ne(I),np(J)} (_%) I,J

P<-R
— T4+ J= H pmin{np(I),np(J)}
P<-R
since I 4 J is the smallest ideal containing I and J.

e INJ= HP<]~RPmaX{nP(I),nP(J)}:

INJCLJ L npInd)>np),npJ)
= np(INJ)>max{np(I),np(J)} >np(l),np(J)

B rngc [ prestre@neon € g

PQ-R

— H Pmax{np([),nP(J)} cIindJd
P4 R
= Equality

Theorem 8.16. Let R be a DD, I < R,0# a € I. Then:
dbel:(a,byp=1

In particular: Every ideal in a DD can be generated by two elements.

Proof. For P € Ass(I) choose

bP c PnP(I) . H QnQ(I)+1 \ H QnQ(1)+1 —. JP
P#Q€eAss((a)) QEAss((a))
Suppose bp € PP+l Then

bp € preD+l ﬂJP H Qe+ 4
QeAss((a))

134



8. Valuation Rings and Dedekind Domains

Hence

=b:= > bp ¢Q"DTVQ € Ass((a))

PeAss({(a))
(a,b)CI <a7b>,¢_Q"Q(I)+1
= nq(l) < nq((a,b)) < nq(I)

= nq(I) = nq((a,0))VQ € Ass((a))

And for all Q € m— Spec(R)\Ass({a))

= nq((a,0) < ng(fa)) Y= 0 and
nq({a)) > nq(I)
= nq() =nq((a)) =nqg((a,b)) =0
Hence
ng(I) =nqg((a,0))vVQ <R
and by BI5l I = (a,b) O

Theorem 8.17. Let R be a noetherian ID of dimension dim(R) = 1. Then the
following are equivalent:

(a) R is a DD.
(b) R is normal.
(¢) Y0 # P € Spec(R) : Rp is a DVR.

Proof.

o “(a) = (c)”: Let 0# 1 < Rp,I C Rp

—=VI= (|Q =P°<-Rp
ICQ<- Rp

= [ is P°®-primary

= [° is P®° = P-primary

BDDre _ pr for some n
— 1B pee _ (peyn

|@RP isa DVR
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e “(c) = (a)’: Let 0 # Q@ < R,Q € R be P-primary and n = max{k|Q C
Pk} >1
= Pyt 2 Qp C PR
Ry, pp

—QC P C (P = (Qp) = @< 2Hg
—Q=P"

R normal @ Vi < - R: Ry normal
@VmQ-R:RmisaDVR

Remark 8.18. Let ¥ C A}, be an affine curve, K = K and let
Then
£ s smooth
= Vpek:1=dimy(¥) = dim,(T,(*¥)) = dimg,, , ("p/}2) = dimg (Mp/]2)
mp P 14
& Ru, isa DVR (Vpe ¥ 2 vm<a . R <= V0 # P € Spec(R))
@K[ﬂ normal
@K[f] is a DD

<= % 4s normal

Note. In higher dimensions only (smooth = normal) holds! In terms of algebraic
geometry one can see DD’s as the equivalent to smooth curves. For example:

e ¥=V(y—2?) = K[¥ :K[I,y}/<y_x2> ~ K[z] is a DD
o ¥={(t,t>,t3) € A |t € K}. Then

K[£]:K[l‘,y,2]< %K[t]

z—x?’,y—x2,;vz—y2>
is a DD.

Example 8.19. If R is a PID but not a field, then R is a DD. In particular Z, Z[i],
K[t], K [t], R{z},C{z} are DD’s.
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Definition 8.20. A finite algebraic field extension K of Q is called an algebraic number
field and Int g (Z) is called its ring of integers.

Theorem 8.21. The ring of integers of a finite algebraic number field is a DD.
Proof. Let Q C K be a field extension, d = dimg K and R := Intx(Z). First we show
that R is noetherian. By Exercise 30 it suffices to show:
VO£AI QR = INZ+#{0}
Suppose I # 0, but I NZ = {0}. Then
z2="1nz="
is integral by and by [6.17 we know that

0. 1\ R=Intx(2) ..
= dim

dim(z) = dim(£/7) < dim(R) (Z) 4

Now we show dim(R) = 1 and that R is a normal ID: Since Z — R is integral, by
dim(R) = dim(Z) = 1 and since Quot(R) C K

RC IntQuot(R) (R) C Intg (R)

= IntK(IntK(Z))

Hence Intquot(r)(R) = R. Hence R is normal (and of course an ID). By BRI it is a
DD. O

Example 8.22. If d < 0 is squarefree, then

Vd  ,d=2,3 mod4

Intoy/q)(2) = Zlwa], wa = {1+2¢a d=1 mod 4

Proof. Exercise 42 O
Example 8.23.

(a) R=17,I =(6) = I = (2)(3) In this case prime factorisation of ideals corre-
sponds to prime factorisation of elements.

(b) R = Z[v-5] = Intg,/=5(Z) is a DD, but not factorial: Let I = (6). Claim:
I=P?.Q-Q

for P = <2, 1+ \/—5> ,Q = <3, 1+ \/—5> ,Q = <3, 1-— \/—5> is the unique prime
factorisation of I in R. but (2) = P2 (3) = Q - Q' are not prime.

Proof. Exercise 34 O
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C). Fractional ldeals, Invertible Ideals, Ideal Class Group

Definition 8.24. Let R be an ID, K = Quot(R),0 # I C K an R- submodule of K.
(a) I is called a fractional ideal of R
<—=3J0#x€R:z-ICR
<:>E|O7$x€R,I’QR:I:%~I'
A fractional ideal I is called integral
= JICR<—< IR
A fractional ideal I is called principal
= dJye K:I=(y),=yR
Notation: R:x [ :={z € K|xz-I C R} is an R-submodule of K.
(b) I is called an invertible ideal of R (or Cartier divisor of R)

:<=3I' < K an R-submodule : (ablac I,bel'),=1-I'"=R
—JI-(R:xkI)=R

Note. We have to prove the equivalence:

Proof. “«<=" is clear and “=" holds since

I'C(RixI) = R=I1-I'CI-(R:xI)CR

Notation:
Div(R) := {I < K |I is an invertible ideal}

is called the ideal group (or the group of cartier divisors) of R.
Note. Let I, I’ € Div(R)

ol -I' RixI)-(RixI)=I R-(RixI)=1-(R:xI)=R. Hence
Div(R) is closed with respect to “.”.

o I-R=1YI e Div(R)
o ([-I)-I"=1-(I'"-1I")I,I' 1" € Div(R) obviously
e [ (R:xI)=R = (R:x I) € Div(R) is the inverse of I.

In particular I’ = (R :x I) in the definition, since the inverse is unique.
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Example 8.25. Let R be an ID, K = Quot(R),I < K an R-submodule

(a) I = <%, . Z> finitely generated, then I is fractional with © = by - ... - b,,.

(b) R noetherian, I fractional, then I is finitely generated, since there exists an
ze RI'AR: 1= %I’. As R is noetherian, I’ = {aj,...,a,), hence I =
(o, ).

(¢) I invertible = I fin. gen. 10w fractional, since:

=>1:Zaibi,ai el,b e (R ‘K [)
i=1
=Vcel:c=1-c= a; (b; - c) € {ay,...,an
> ai(bi-c) €l )R

=1 €ER

(d) I = (x) principal, 0 # x € K = I is invertible
(e) R=7Z,K = Q, then
I fractional <= [ =¢q-Z for some 0 £ ¢ € Q
I integral <= [ =¢q-Z forsome0#q€Z
Thus: fractional = principal = invertible

Proposition 8.26. Let (R,m) be a local ID, 0 # I < Quot(R) =: K an R-submodule.
Then:

I is an invertible ideal <= I = (a) is principal, a # 0
Proof.
o “=":[R27(d)
e “=":Since - (R:x I)=R
:Hae\{/,be&i{_{:u::abgm

CK CK
—u € R*, since R is local

Let ce I.
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O

Proposition 8.27 (Invertibility is a local property). Let R be an ID, 0 # I C K a
fractional ideal. Then the following are equivalent:

o [ is invertible over R.
e [ is fin. gen. and Ip is invertible over Rp¥V P € Spec(R)
e [ is fin. gen. and Iy is invertible over Ry¥m € m — Spec(R)

In particular: For fin. gen. R-submodules of K invertibility is a local property.

Proof.
e “(a) = (b)”: By B2Ec) I is finitely generated and
I'-I'=R=1Ip-Ip=(I-I')p=Rp

Hence Ip is invertible

o “b) = (¢): v

e “(c) = (a)”: We have to show that

S™HR:x I)=(S"'R:x S7'I) for S = R\m

“C”: Letbe (R:x I),se S

b b
— = ST'ICST'R = S € ST'Rix ST
“D”: Since [ is finitely generated we have I = (aq, ..., ax). Now let
b
;€ ST'R i ST

zb-aizé(t-ai)ES_lR
[
es-11
—ds; €S:b-a;-8,€R
— Fors=s1-...-s,b-a;,-s€R
—=b-seR:gl
ﬁ%:lZ—jES_l(R:KI)
Thus
(I-(R:g D)m=In-(R:x I)m
=In - (Rm:x Im) = RmVm<-R
=TI - (R:xgI) L mVm
=I-(R:xI)=R
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Corollary 8.28. Let (R,m) be a local ID and not a field, K := Quot(R). Then
R is a DVR <= Div(R) = {I|I fractional ideal of R}
(i.e. I fractional <= I invertible)

Proof.
Note. By [R20 Div(R) C {I|I fractional}

e “=": Let I be a fractional ideal of R
1
—3r qRr, PR <y>R7o¢xeR;]:;.p: <%>
R

= [ is principal

@I is invertible

o “—=": Let 0 2 I < R. Then I is a fractional ideal of R and by assumption
invertible. By it is principal, hence R is a PID and not a field. Thus by
RI0 Ris a DVR.

O
Theorem 8.29. Let R be an ID, R not a field. Then
R is a DD <= Div(R) = {I|I fractional}

(i.e. I fractional <= I invertible)

Proof.

e “=": Since R is a DD, R is noetherian and Ry is a DVR Vm < - R by B17
Now let I be a fractional ideal of R.

@I fin. gen. and Iy fractional
1
=I=-II'dR
x
= Iy = 1]’
m ="l

RgRIm is invertible and I is fin. gen

@I is invertible
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e “<": Since every ideal 0 # I < R is fractional, hence invertible, hence finitely
generated, R is noetherian. Now we need to show that Ry is a DVR Vm < - R:

Let I be a fractional ideal of Ry

=1 = %J, J < R
= J° < R, in particular fractional
Y28 ¢ is invertible and fin. gen., as R is noeth.
@J = (y)p principal, as Ry is local
@Rm is a DVR

Hence dim(R) = supp. p{dim(Rm)} = 1 and thus R is a DD b RI7
————

=1

Corollary 8.30. If R is a DD, then

Div(R){I|I fractional} = P Z- P

PR
is a free abelian group with free generators m — Spec(R) by
Pt Pt ay - P+t an Py
Remark 8.31. The following is an exact sequence of abelian groups:

{1} R K* Div(R) — Coker(¢) — {0}

where )
Coker(¢) = DIV(R)/{<I> |z e K*} = Pic(R)

is the Picard group of R or the ideal class group of R.

If R is the ring of integers of an algebraic number field, then |Pic(R)| < oo (this is
hard to prove!) and it is called the class number of K = Quot(R).

Corollary 8.32. For a DD R, the following are equivalent:
(a) [Pic(R)| =1

(b) Div(R) =K /ps
(¢) R isa P.ID.
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(d) Ris a U.F.D.

Proof.
e “(a) < (b)” by B3Il
e “(c) < (d)” by Exercise 36

o “(a) = () Let 01 <R

=2

= I fractional
= [ invertible, i.e. I € Div(R),as R is a DD
= [ principal, as |Pic(R)| =1

e “(c) = (a)”: Let I be any fractional ideal

1
—I=-TI'"'9R,z€R
xr

= 1I"=(y), as Ris a PID

1= (Y

Corollary 8.33. Let R be a DD and h := |Pic(R)| the class number of R. Then
VI < R:I" is principal

i.e. the class number measures, "how far away’ the ideals are from being principal.

Proof.

0#I<4R
= [ fractional
= I invertible, i.e. I € Div(R)
— 1" =T"=TR € Pic(R)
= I"c {(z),z € K*}

— I" is principal
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Remark 8.34 (cf. Bruns, §15). Let

R = Zlwa] = Intg /5 (Z),d < 1 squarefree

in the notation of 822 How can we determine the class number of Q[v/d]? The idea
1s the following:

First, find all mazimal ideals P < - R, such that

2 2
‘R/p‘ < 2y |wa —wal* = 2 |wa — wal
s i

W (TRRESTE
[4d] ,d=2,3(4)

where

There are only finitely many of these ideals and their classes generate Pic(R). Check
then, how many different products can be built of these.

Example 8.35.
(a) (d=—1): R=1Z[i] is a PID, so by B32] |Pic(R)| = 1.

(b) (d=—19): R = 7[*=1 V2_19] is a PID by 1.41 (cf. Appendix), so again |Pic(R)| =
1. An alternative approach would be to consider

2 2v19
ZVlwg —wa” = === <3
™ ™

Then show that there exists no P < - R with ‘R/P’ = 2. Hence follows that
|[Pic(R)| = 1 and from this, that R is a PID

(c) (d=—5): R="Z[V-35]
P=(2,14V=5)<-R

is not principal, since R/p ={0,1} & Z, is a field. Hence |Pic(R)| # 1.

Now consider 5 A
— |wd7w7d‘2:*\/g<3
T T

If Q@ < - R with ‘R/Q‘ = 2, then @ = P, since:
=—=2cQ,sincel+1=2=0

—P2=(2)CQ
= P C @, as @ is prime

= P = (@, as both are maximal
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Since P? = (2) is principal

— P’ =R € Pic(R)
— Pic(R) = {R, P}
— |Pic(R)| = 2

(d) (d < —1, without proof):

Zlwg) UFD <= d € {—1,-2,-3,—7,—11,—19, —43, —67, —163}
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R - algebra,
R - algebra homomorphism, [0

additive function,

algebraic,

algebraic number field, 37
algebraically independent,
algebraically independent /g,
annihilator, [7

artinian ring,

ascending chain condition,
associated primes,

Cartier divisor,
catenarian, [I17
class number,
codimension,
cokernel, 271
contraction,
coprime, [

Dedekind domain,
descending chain condition,
direct product, @,
direct sum,
division

by ideals,

embedded primes,
epimorphism, [@ 2T
exact sequence,
extension,

finite ring extension,

finitely generated R-algebra,
finitely generated module, 2]
finitely presented module, @4l
flat module,

formal power series, [
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free module, 23]

generated ideal,
generated submodule,
Going-Up,
group
ideal class group,
totally ordered, I21]

height of ideals,
height of prime ideals,
homomorphism, 2T

ID., B
ideal, @

fractional,
ideal group,
integral,
invertible,
principal,
idempotent,
image, @ 271
integral, @2]
integral closure, 04]
integral domain,
integrally closed,
intersection (of ideals),
isolated,
isolated primes,
isomorphism, @ 2T

Jacobson radical, [[4]

kernel, @ 2T]
Krull dimension,

leading coefficent,
linear map, 21
local, I8, B4
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localisation, reduced rings,
localisation at f, regular,
localisation at P, ring,
locally free, 57 ring extension,
Lying-Over, ring of integers, [[37]
ringhomomorphism,
m-Spec,
maximal ideal, short exact sequence,
minimal primary decomposition, [73] Spec(R), T4
minimal prime ideal, spectrum, [I4]
minimal primes, split exact sequence, 20
module, submodule,
module quotient, subring, M
monomorphism, [0, 21] sum (of ideals),
multiplicatively closed, BTl symbolic power,
nilpotent, 8 tensor product,
nilradical, [I4] torsion module,
Noether Normalisation, 1] total quotient ring,
noetherian R-module, total ring of fractions,
noetherian ring, transcendence degree, [IT11]
normal rings, transcendental,
normalisation,
unit,

order

ideal’s prime factors, valuation, [[21]

discrete,

Picard group, valuation ring, [IT21]
polynomial ring, discrete,
Priifer group, vanishing ideal,
primary decomposition, vanishing set,
primary ideals,
prime ideal, zero-divisor,
principal ideal, Zorn’s Lemma,

product (of ideals),
projective module, [44]
puiseux series,
pure tensor,

quotient (of ideals),
quotient field,
quotient module,
quotient ring,

R-module,
radical,
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